News Posts matching #Willow Cove

Return to Keyword Browsing

Intel Rocket Lake CPUs Will Bring up to 10% IPC Improvement and 5 GHz Clocks

Intel is struggling with its node development and it looks like next-generation consumer systems are going to be stuck on 14 nm for a bit more. Preparing for that, Intel will finally break free from Skylake-based architectures and launch something new. The replacement for the current Comet Lake generation is set to be called Rocket Lake and today we have obtained some more information about it. Thanks to popular hardware leaker rogame (_rogame), we know a few stuff about Rocket Lake. Starting off, it is known that Rocket Lake features the backport of 10 nm Willow Cove core, called Cypress Cove. That Cypress Cove is supposed to bring only 10% IPC improvements, according to the latest rumors.

With 10% IPC improvement the company will at least offer some more competitive product than it currently does, however, that should be much slower than 10 nm Tiger Lake processors which feature the original Willow Cove design. It shows that backporting of the design doesn't just bring loses of the node benefits like smaller design and less heat, but rather means that only a fraction of the performance can be extracted. Another point that rogame made is that Rocket Lake will run up to 5 GHz in boost, and it will run hot, which is expected.

Intel has "Something Big to Share" on September 2nd

Intel just sent out press invites to what is likely an online media event slated for September 2, 2020. The spells nothing other than a one-liner "We have something big to share..." with the September 2 date. Everyone has a theory as to what this could be, depending on who you ask. The Verge has a valid theory pointing to this being a formal launch of the 11th Gen Core "Tiger Lake" mobile processors on the basis of several notebook manufacturers slating their "Tiger Lake" based notebook launches on "Fall 2020."

We believe this could be a desktop-related unveil, possibly a performance preview or teaser of the company's 11th Gen "Rocket Lake-S" processor. Why September? Because September 2020 is going to be a busy month for AMD and NVIDIA, with both launching their next-gen consumer graphics architectures, product lines; and more interestingly, AMD rumored to launch its "Zen 3" microarchitecture in some shape or form. A Ryzen 4000 "Vermeer" product launch could trigger Intel to at least preview "Rocket Lake-S," as it's the first client-desktop microarchitecture in 5 years to introduce IPC gains on the backs of new "Cypress Cove" CPU cores that are a 14 nm back-port of "Willow Cove." It wouldn't surprise us if Intel shed more light on the performance throughput of its big new Xe graphics processors.

Intel Core i7-1165G7 "Tiger Lake" Mauls Ryzen 7 4700U "Renoir" in Most Geekbench Tests

Intel's upcoming Core i7-1165G7 4-core/8-thread processor based on the 10 nm "Tiger Lake-U" silicon packs a mean punch in comparison to the AMD Ryzen 7 4700U processor, despite half the number of CPU cores. A Geekbench comparison between two Lenovo laptops, one powered by an i7-1165G7, and the other by a 4700U, shows a staggering 36.8% performance lead for the Intel chip in single-threaded performance, while also being 0.5% faster in multi-threaded performance. The i7-1165G7 features a 4-core/8-thread CPU with "Willow Cove" cores, while the 4700U lacks SMT, and is an 8-core/8-thread chip with "Zen 2" CPU cores. The game changes with the Ryzen 7 4800U, where the 8-core/16-thread chip ends up 22.3% faster than the Core i7-1165G7 in the multi-threaded test owing to SMT, while Intel's single-threaded performance lead is lowered to 29.3%.

Intel "Willow Cove" Backported to 14nm is "Cypress Cove"?

Intel's 11th generation Core "Rocket Lake-S" desktop processor is fascinating as it introduces Intel's first CPU core IPC uptick in about half a decade. Until now, it was rumored that "Rocket Lake-S" features a back-port of Intel's "Willow Cove" CPU cores to the 14 nm silicon fabrication process. It turns out that Intel doesn't want to call these cores "Willow Cove," which make their debut with the 10 nm+ "Tiger Lake" mobile processors later this Summer. Enter "Cypress Cove." A Moore's Law is Dead video presentation sheds light on this mysterious new codename.

Apparently, "Cypress Cove" is the codename Intel is using to refer to the CPU cores Intel is building with its latest CPU core IP on older 14 nm process. Owing to the process, the IPC of these cores may be different from the "Willow Cove" cores on "Tiger Lake," and to avoid confusion, Intel possibly choosing to give it a different internal codename. In other words, Moore's Law is Dead believes that "Cypress Cove" may not offer the alleged 25% IPC gains over "Skylake" that you could expect instead from "Willow Cove" cores in "Tiger Lake."

Intel "Rocket Lake-S" a Multi-Chip Module of 14nm Core and 10nm Uncore Dies?

VLSI engineer and industry analyst, @chiakokhua, who goes by "Retired Engineer" on Twitter, was among the very first voices that spoke about 3rd gen Ryzen socket AM4 processors being multi-chip modules of core- and uncore dies built on different silicon fabrication processes, which was an unbelievable theory at the time. He now has a fantastic theory of what "Rocket Lake-S" could look like, dating back to November 2019, which is now re-surfacing on tech communities. Apparently, Intel is designing these socket LGA1200 processors to be multi-chip modules, similar to "Matisse" in some ways, but different in others.

Apparently, "Rocket Lake-S" is a multi-chip module of a 14 nm die that holds the CPU cores; and 10 nm die that holds the uncore components. AMD "Matisse" and "Vermeer" too have such a division of labor, but the CPU cores are located on dies with a more advanced silicon fabrication process (7 nm), than the die with the uncore components (12 nm).

Intel "Tiger Lake" Gen12 Xe iGPU Compared with AMD "Renoir" Vega 8 in 3DMark "Night Raid"

Last week, reports of Intel's Gen12 Xe integrated graphics solution catching up with AMD's Radeon Vega 8 iGPU found in its latest Ryzen 4000U processors in higher-tier 3DMark tests sparked quite some intrigue. AMD's higher CPU core-count bailed the processor out in overall 3DMark 11 scores. Thanks to Thai PC enthusiast TUM_APISAK, we now have a face-off between the Core i7-1165G7 "Tiger Lake-U" processor (15 W), against AMD Ryzen 7 4800U (15 W), and the mainstream-segment Ryzen 7 4800HS (35 W), in 3DMark "Night Raid."

The "Night Raid" test is designed to evaluate iGPU performance, and takes advantage of DirectX 12. The Core i7-1165G7 falls behind both the Ryzen 7 4800U and the 4800HS in CPU score, owing to its lower CPU core count, despite higher IPC. The i7-1165G7 is a 4-core/8-thread chip featuring "Willow Cove" CPU cores, facing off against 8-core/16-thread "Zen 2" CPU setups on the two Ryzens. Things get interesting with graphics tests, where the Radeon Vega 8 solution aboard the 4800U scores 64.63 FPS in GT1, and 89.41 FPS in GT2; compared to just 27.79 FPS in GT1 and 32.05 FPS in GT2, by the Gen12 Xe iGPU in the i7-1165G7.

Intel "Tiger Lake" vs. AMD "Renoir" a Pitched Battle on 3DMark Database

Intel's 11th generation Core i7-1165G7 "Tiger Lake-U" processor armed with 4 "Willow Cove" cores and Gen12 Xe graphics fights a pitched battle against AMD Ryzen 7 4800U "Renoir" (8 "Zen 2" cores and Radeon Vega 8 graphics), courtesy of some digging by Thai PC enthusiast TUM_APISAK. The 4800U beats the i7-1165G7 by a wafer-thin margin of 1.9% despite double the CPU core-count and a supposedly advanced iGPU, with 6331 points as against 6211 points of the Intel chip, in 3DMark 11. A breakdown of the score reveals fascinating details of the battle.

The Core i7-1165G7 beats the Ryzen 7 4800U in graphics tests, with a graphics score of 6218 points, against 6104 points of the 4800U, resulting in a 1.9% lead. In graphics tests 1, 2, and 3, the Gen12 Xe iGPU is 7.3-8.9% faster than the Radeon Vega 8, through translating to 2-4 FPS. The Intel iGPU crosses the 30 FPS mark in these three tests. With graphics test 4, the AMD iGPU ends up 8.8% faster. Much of AMD's performance gains come from its massive 55.6% physics score lead thanks to its 8-core/16-thread CPU, which ends up beating the 4-core/8-thread "Willow Cove," with the 4800U scoring 12494 points compared to 8028 points for the i7-1165G7. This CPU muscle also plays a big role in graphics test 4. This battle provides sufficient basis to speculate that "Tiger Lake-U" will have a very uphill task matching "Renoir-U" chips such as the Ryzen 7 4800U, and the upcoming Ryzen 9 4900U (designed to compete with the i7-1185G7).

No Intel "Rocket Lake-S" or "Ice Lake-X" This Year?

A roadmap slide from an Intel Partner Connect presentation suggests that the company's client-segment processor lineup will be unchanged for the rest of 2020, with the company briskly launching its 10th generation "Comet Lake-S" desktop processor lineup through May-June, and "Comet Lake-H" a month prior. The Core X "Cascade Lake-X" processor lineup will continue to lead the company in the high core-count HEDT segment, with no indications of new models, at least none higher than 18 cores.

More importantly, this slide dulls expectations of the company refreshing its desktop process segment just before Holiday 2020 with the 11th generation "Rocket Lake-S" silicon that has next-gen "Willow Cove" CPU cores, Gen12 Xe integrated graphics, and PCIe gen 4.0 connectivity, especially with engineering samples of the chips already hitting the radar. Intel is expected to launch 10 nm "Ice Lake-SP" Xeon enterprise processors in 2020, and there was hope for some of this IP to power Intel's next HEDT platform, the fabled "Ice Lake-X," especially with AMD's "Castle Peak" 3rd gen Threadrippers dominating this segment. While there's little doubt that the slide may have originated from Intel, its context must be studied. Partner Connect is a platform for Intel to interact with its channel partners (distributors, retailers, system integrators, etc), and information about future products is far more restricted on these slides, than presentations intended for large OEMs, motherboard manufacturers, etc. Then again, with the COVID-19 pandemic throwing supply chains off rails, it wouldn't surprise us if this slide spells Gospel.

Intel 8-core/16-thread "Rocket Lake-S" Processor Engineering Sample 3DMarked

The "Rocket Lake-S" microarchitecture by Intel sees the company back-port its next-generation "Willow Cove" CPU core to the existing 14 nm++ silicon fabrication process in the form of an 8-core die with a Gen12 Xe iGPU. An engineering sample of one such processor made it to the Futuremark database. Clocked at 3.20 GHz with 4.30 GHz boost frequency, the "Rocket Lake-S" ES was put through 3DMark "Fire Strike" and "Time Spy," with its iGPU in play, instead of a discrete graphics card.

In "Fire Strike," the "Rocket Lake-S" ES scores 18898 points in the physics test, 1895 points in the graphics tests, and an overall score of 1746 points. With "Time Spy," the overall score is 605, with a CPU score of 4963 points, and graphics score of 524. The 11th generation Core "Rocket Lake-S" processor is expected to be compatible with existing Intel 400-series chipset motherboards, and feature a PCI-Express gen 4.0 root complex. Several 400-series chipset motherboards have PCIe gen 4.0 preparation for exactly this. The increased IPC from the "Willow Cove" cores is expected to make the 8-core "Rocket Lake-S" a powerful option for gaming and productivity tasks that don't scale across too many cores.

New Details Surface on Intel NUC 11 Extreme: TigerLake-U & GTX 1660 Ti

New details have surfaced on Intel's next-generation NUC systems - built with the intention to carry the highest performance density per available chassis capacity in the computer market (the aim is a 1.35 L case). We already knew Intel's Panther Canyon NUC would bring about their Tiger Lake-U designs would be carrying the company's Tiger Lake-U CPUs, which should combine next-generation "Willow Cove" CPU cores with an iGPU based on Intel's new Xe graphics architecture. A new piece of data here, as has been reported, is that Intel is also working on an enthusiast-class NUC under the "Phantom Canyon" moniker, which should bring about increased graphics performance.

Even if Intel's graphics architecture is a mindblowing performance improvement over their current graphics technologies, there's only so much an integrated graphics solution can do. Now, we seemingly have confirmation, via a 3D Max Benchmark, that Intel's Panther Canyon will be paired with an NVIDIA GeForce 1660 Ti graphics card (scoring 5,355 points). The 3D Mark TimeSpy test system uses a TigerLake-U engineering sample clocked at 2.3 GHz base and 4.4 GHz boost, alongside an 80 W NVIDIA GTX 1660 Ti (Notebook) and 8 GB of RAM.

Intel Rocket Lake CPU Appears with 6 Cores and 12 Threads

We have been hearing a lot about Intel's Rocket Lake lineup of processors. They are supposed to be a backport of Willow Cove 10 nm core, adapted to work on a 14 nm process for better yielding. Meant to launch sometime around late 2020 or the beginning of 2021, Rocket Lake is designed to work on the now existing LGA1200 socket motherboards, which were launched just a few days ago along with Intel Comet Lake CPUs. Rocket Lake is there to supply the desktop segment and satisfy user demand, in light of lacking 10 nm offers for desktop users. The 10 nm node is going to present only on mobile/laptop and server solutions before it comes to the desktop.

In the latest report on 3D Mark, the hardware leaker TUM APISAK has found a Rocket Lake CPU running the benchmark and we get to see first specifications of the Rocket Lake-S platform. The benchmark ran on 6 core model with 12 threads, that had a base clock of 3,5 GHz. The CPU managed to boost up to 4,09 GHz, however, we are sure that these are not final clocks and the actual product should have even higher frequencies. Paired with Gen12 Xe graphics, the Rocket Lake platform could offer a very nice alternative to AMD offerings if the backport of Willow Cove goes well. Even though it is still using a 14 nm node, performance would be good. The only things that would be sacrificed (from backporting) are die space and efficiency/heat.
Intel Rocket Lake Benchmark Report

Intel Tiger Lake Processor Spotted with Boost of 5 GHz

Intel is preparing to launch its next-generation Tiger Lake lineup of processors for the middle of 2020. The processors are based on the new "Willow Cove" CPU core, which supposedly brings even more IPC gains compared to previous "Golden Cove" CPU cores found in Ice Lake processors. The Tiger Lake lineup will use Intel's advanced 10 nm+ manufacturing process. This alone should bring some gains in frequency compared to the 10 nm Ice Lake processor generation, which was spotting a maximum of 4.1 GHz boost frequency on 28 W TDP model named Core i7-1068NG7. This processor is labeled as the highest-performing Ice Lake parts available today and the best 10 nm products available so far from Intel.

Thanks to the popular hardware leaker Rogame, we have evidence that the gains from 10 nm+ manufacturing process are real and that Tiger Lake will show us an amazing boost frequency of 5 GHz. In the benchmark, an unknown OEM laptop was spotted running the benchmark with a Tiger Lake CPU. This CPU is a 4 core, 8 threaded model with a base frequency of 2.3 GHz and a surprising boost frequency of 5 GHz. This information should, of course, be taken with a grain of salt until we get more information about the Tiger Lake lineup and their specifications.
Intel Tiger Lake Benchmark Report

Intel "Tiger Lake-U" Processor with Relatively High Clock Speed Spotted

An unnamed Intel "Tiger Lake-U" quad-core processor was spotted on Futuremark database by _rogame, featuring 2.80 GHz nominal clock-speeds. Barring the 28 W i7-1068NG7 and i5-1038NG7, which are exclusive for MacBooks and aren't considered U-segment, all current-gen "Ice Lake" client chips have their nominal clock speeds ranging between 1.00 to 1.30 GHz. Given this, 2.80 GHz would qualify as a big jump for a U-segment "Tiger Lake" chip. We know from a separate report that "Tiger Lake" could also offer Turbo Boost frequencies as high as 4.70 GHz for the top Core i7-1185G7 part, a similar jump from the 3.90 GHz max boost of the current-gen i7-1065G7, all while retaining a 15 W nameplate TDP.

The Futuremark database listing only mentions nominal clock of 2.80 GHz, and the CPU core configuration of 4-core/8-thread. The hardcoded CPU name string of this prototype specifies "Tiger Lake U," confirming this is a 15 W part, and not a 28 W part that will be gobbled down by Apple. Intel's newfound clock-speed headroom could be attributed to the company's refined 10 nm+ silicon fabrication node. "Tiger Lake" combines "Willow Cove" CPU cores with an iGPU based on the company's ambitious new Xe graphics architecture, marking its commercial debut. "Tiger Lake" is expected to launch around September-October, 2020.

Intel "Alder Lake" LGA1700 to Feature DDR5; "Rocket Lake" Thermal Specs Leaked

PTT leaked some juicy details of the upcoming Intel "Rocket Lake" and "Alder Lake" processor generations. "Rocket Lake" will power Intel's 11th generation Core processor series in the LGA1200 package, and are rumored to be a "back port" of Intel's advanced "Willow Cove" CPU cores to a 14 nm-class silicon fabrication node, with core-counts ranging up to 8. The idea for Intel is to sell high IPC, high clock-speed desktop processors for gaming.

According to the PTT report, there will be three kinds of SKUs for "Rocket Lake" based on TDP: 8-core parts with 95 W TDP rating; and 8-core, 6-core, and 4-core parts in 80 W TDP and 65 W TDP variants. For the 95 W (PL1) parts, the power-levels PL2, and PL4 are reportedly set at 173 W and 251 W, respectively, and a 56-second Tau (a timing variable that dictates how long a processor can stick around at an elevated power-state before retreating to PL1, which is interchangeable with the TDP value on the box). The 80 W TDP parts feature 146 W PL2, 191 W PL3, and 251 W PL4, but a lower Tau value of 28 seconds. For the 65 W parts, the PL2 is 128 W, PL3 is 177 W, and PL4 251 W, and the Tau value 28 seconds.

Intel Core i7-1185G7 "Tiger Lake" Ships with 4.70 GHz Turbo Boost Speeds

Intel spoke of a "double digit percentage performance growth generation on generation" at its product reveal for "Tiger Lake" along the sidelines of its CES event. We now have a theory as to how they arrived at that. The company's 11th generation Core "Tiger Lake" processor, scheduled to launch sometime mid-2020, could bring about big gains in per-core performance for the ultraportable segment. PC enthusiast MebiuW, who has had a high hit-rate with Intel leaks, revealed that the flagship "Tiger Lake" part, the Core i7-1185G7, could ship with a CPU Turbo Boost speed of 4.70 GHz, a steep increase from the 3.90 GHz of the top current "Ice Lake" part, the i7-1065G7. The increased clock speeds, coupled with the more advanced "Willow Cove" CPU cores appear to be the 11th generation chip's value proposition.

Intel Confirms Mid-2020 "Tiger Lake" Launch

Intel earlier today published its Q1 2020 financial results. In its slide deck, the company illustrated many of the facts and numbers detailed in its earnings release, but one item caught our eye: a slide confirms that the company plans to launch its "Tiger Lake" client processor by mid-year (we would place that between June to August, 2020. Intel is quite ambitious about "Tiger Lake," as it forms the microarchitecture behind its most advanced 11th generation Core mobile processors. A slide from a November 2019 investor meet details the key design goals. "Tiger Lake" implements Intel's new "Willow Cove" CPU core design that succeeds "Sunny Cove" cores found inside its "Ice Lake" processors.

"Willow Cove" sees a new cache design, implementation of new transistor optimizations from Intel's 10 nm+ silicon fabrication process, and new security features. Besides "Willow Cove" CPU cores, "Tiger Lake" sees the market debut of the company's ambitious Xe graphics architecture as its iGPU solution. The chip will also support next-generation I/O. Here's hoping Intel is able to step up CPU core-counts with "Tiger Lake." The company was forced to tap into "Comet Lake" for both its 15 W and 45 W markets due to their higher core counts, despite an older CPU core and iGPU architecture than "Ice Lake." In the same slide, Intel mentions that it commenced sampling for "Ice Lake-SP" line of high core-count enterprise processors.

Intel's Next-Generation Tiger Lake-U Core i7-1165G7 CPU Score Leaks

Intel is preparing to launch its next-generation Tiger Lake-U lineup of CPUs based on the new Willow Cove core that is supposed to bring big IPC gains and plenty of new features. Being a part of the 11th generation of Core CPUs, these processors are expected to arrive sometime in the second half of 2020, built on Intel's 10 nm+ manufacturing process. Thanks to a popular hardware leaker @_rogame, we have found another Tiger Lake-U in the 3D Mark benchmark database. Unlike the last time when we saw Intel's Core i7-1185G7 being run on the 3D Mark tests, we now have test results of its brother - the Core i7-1165G7.

From the 3D Mark report, we can see some details like CPU's base frequency, which is 2.8 GHz in this case. This is just 200 MHz lower compared to the previous Core i7-1185G7 CPU that leaked. The platform used to test the new Core i7-1165G7 CPU was running Windows 10 and had 16 GB of DDR4 SODIMM memory. The new 3D Mark results are already looking promising. From the previous leak of Core i7-1185G7, we saw that Tiger Lake CPU which managed to score 2922 in the CPU test, 1296 in GPU test, and an overall score of 1414. However, this new Core i7-1165G7 CPU is a bit different. In the graphic test, it scores 1150 points, while the CPU test shows an impressive 4750 points. This Core i7-1165G7 result is much higher compared to the more powerful Core i7-1185G7 CPU, which is a bit strange. It could be attributed to a faster memory, but so far we don't know. However, the overall score of the i7-1165G7 is a bit lower compared to i7 1185G7, scoring 1297 points.
Intel Core i7-1165G7

Intel 10nm Product Lineup for 2020 Revealed: Alder Lake and Ice Lake Xeons

A leaked Intel internal slide surfaced on Chinese social networks, revealing five new products the company will build on its 10 nm silicon fabrication process. These include the "Alder Lake" heterogenous desktop processor, "Tiger Lake" mobile processor, "Ice Lake" based Xeon Scalable enterprise processors, DG1 discrete GPU, and "Snow Ridge" 5G base-station SoC. Some, if not all of these products, will implement Intel's new 10 nm+ silicon fabrication node that is expected to go live within 2020.

"Alder Lake" is a desktop processor that implements Intel's new heterogenous x86 core design that's making its debut with "Lakefield." The chip features up to 8 larger "Willow Cove" or "Golden Cove" CPU cores, and up to 8 smaller "Tremont" or "Gracemont" cores. This 8-big/8-small combo lets the chip achieve TDP targets around 80 Watts. Next up is "Tiger Lake," Intel's next-generation mobile processor family succeeding "Ice Lake." This microarchitecture implements "Willow Cove" CPU cores in a homogeneous setup, alongside Xe architecture based integrated graphics. "Ice Lake-SP" is Intel's next enterprise architecture that places mature "Sunny Cove" CPU cores in extreme core-count dies. Lastly, there's "Snow Ridge," an SoC purpose built for 5G base-stations. Image quality notwithstanding, these slides don't appear particularly new, and it's likely that COVID-19 has destabilized the roadmap. For instance, "Alder Lake," and "Ice Lake-SP" are expected to be 10 nm++ chips, a node that doesn't go live before 2021.

Intel Rocket Lake-S Platform Detailed, Features PCIe 4.0 and Xe Graphics

Intel's upcoming Rocket Lake-S desktop platform is expected to arrive sometime later this year, however, we didn't have any concrete details on what will it bring. Thanks to the exclusive information obtained by VideoCardz'es sources at Intel, there are some more details regarding the RKL-S platform. To start, the RKL-S platform is based on a 500-series chipset. This is an iteration of the upcoming 400-series chipset, and it features many platform improvements. The 500-series chipset based motherboards will supposedly have an LGA 1200 socket, which is an improvement in pin count compared to LGA 1151 socket found on 300 series chipset.

The main improvement is the CPU core itself, which is supposedly a 14 nm adaptation of Tiger Lake-U based on Willow Cove core. This design is representing a backport of IP to an older manufacturing node, which results in bigger die space due to larger node used. When it comes to the platform improvements, it will support the long-awaited PCIe 4.0 connection already present on competing platforms from AMD. It will enable much faster SSD speeds as there are already PCIe 4.0 NVMe devices that run at 7 GB/s speeds. With RKL-S, there will be 20 PCIe 4.0 lanes present, where four would go to the NVMe SSD and 16 would go to the PCIe slots from GPUs. Another interesting feature of the RKL-S is the addition of Xe graphics found on the CPU die, meant as iGPU. Supposedly based on Gen12 graphics, it will bring support for HDMI 2.0b and DisplayPort 1.4a connectors.
Intel Rocket Lake-S Platform

Intel 400-series Chipset Motherboards to Lack PCIe Gen 4.0, Launch Pushed to Q2

Intel's upcoming 400-series desktop chipset will lack support for PCI-Express gen 4.0. The motherboards will stick to gen 3.0 for both the main x16 PEG slots wired to the LGA1200 socket, and general purpose PCIe lanes from the PCH, according to a Tom's Hardware report. It was earlier expected that 400-series chipset motherboards will come with preparation for PCIe gen 4.0, so even if the upcoming 10th gen "Comet Lake" desktop processors lacked gen 4.0 root-complexes, the boards would be fully ready for the new bus standard in 11th gen "Rocket Lake" desktop processors.

10th gen "Comet Lake" desktop processors are built on 14 nm process, and implement Intel's current-gen CPU core design Intel has been implementing since 6th gen "Skylake." It's only with 11th gen "Rocket Lake" that the mainstream desktop platform could see a new CPU core design, with the company reportedly back-porting "Willow Cove" CPU cores to the 14 nm process. "Rocket Lake" is also expected to feature a small Gen12 iGPU with 32 execution units, and a new-gen uncore component that implements PCIe gen 4.0. PCIe gen 4.0 doubles bandwidth over gen 3.0, and while only a handful GPUs support it, the standard is made popular by a new generation of M.2 NVMe SSDs that are able to utilize the added bandwidth to push sequential transfer rates beyond M.2 PCIe 3.0 x4 limitations.

Intel "Panther Canyon" NUC Implements "Tiger Lake" SoC with Xe Graphics

Intel NUC 11 Extreme is the spiritual successor to the "Hades Canyon" and "Skull Canyon" NUC, and implements the company's next-generation 10 nm+ "Tiger Lake" processor. Codenamed "Panther Canyon," the NUC 11 Extreme represents a line of ultra-compact desktops with serious computing power, bringing together the company's highest-performance CPU cores and iGPUs. The "Tiger Lake-U" SoC powering the NUC 11 Extreme will reportedly be configured with a 28-Watt TDP, and will come in Core i3, Core i5, and Core i7 variants.

The "Tiger Lake-U" processor is expected to combine next-generation "Willow Cove" CPU cores with an iGPU based on Intel's new Xe graphics architecture, in what could be the first commercial outing for both. The NUC 11 Extreme "Panther Canyon" will also support up to 64 GB of dual-channel DDR4-3200 memory over SO-DIMMs, an M.2-2280 slot with PCI-Express 4.0 x4 and SATA 6 Gbps wiring, and option for Intel Optane M10 cache memory. On the connectivity front, and Intel AX-201 WLAN card provides 802.11ax Wi-Fi 6, and Bluetooth 5. A 2.5 GbE wired interface will also be available. These will also be among the first NUCs to feature front- and rear-Thunderbolt ports (possibly next-gen 80 Gbps given that the platform implements PCIe gen 4.0). The NUC 11 Extreme "Panther Canyon" is expected to launch some time in the second half of 2020.

Intel "Rocket Lake" an Adaptation of "Willow Cove" CPU Cores on 14nm?

The "Willow Cove" CPU core design succeeds "Sunny Cove," Intel's first truly new CPU core design in close to 5 years. "Sunny Cove" is implemented in the 10 nm "Ice Lake" microarchitecture, and "Willow Cove" cores are expected to debut with the 10 nm+ "Tiger Lake." It turns out that Intel is working to adapt "Willow Cove" CPU cores onto a 14 nm microarchitecture, and "Rocket Lake" could be it.

Twitter user @chiakokhua, a retired VLSI engineer with high hit-rate on CPU microarchitecture news, made sense of technical documents to point out that "Rocket Lake" is essentially a 14 nm adaptation of "Tiger Lake," but with the iGPU shrunk significantly, to make room for the larger CPU cores. The Gen12 iGPU on "Rocket Lake-S" will feature just 32 execution units (EUs), whilst on "Tiger Lake," it has three times the muscle, with 96 EUs. "Rocket Lake" also replaces "Tiger Lake's" FIVR (fully-integrated voltage regulation) with a conventional SVID VRM architecture.

Intel "Tiger Lake" Microarchitecture Features HEDT-like Cache Rebalancing?

With its "Skylake" microarchitecture, Intel significantly re-balanced the cache hierarchy of its HEDT and enterprise multi-core processors to equip CPU cores with larger amounts of faster L2 caches, and lesser amounts on slower shared L3 cache. The company retained its traditional cache balance for its mobile and desktop processor derivatives. This could change with the company's "Tiger Lake" microarchitecture, particularly the "Willow Cove" CPU cores they use, according to a Geekbench online database listing for a prototype quad-core "Tiger Lake-Y" mobile processor.

According to this listing, assuming Geekbench is reading the platform correctly; the "Tiger Lake-Y" processor features a 4-core/8-thread CPU, with a massive 1,280 KB (1.25 MB) of L2 cache per core, and 12 MB of L3 cache. Intel also enlarged the L1D (data) cache to be 48 KB in size, while the L1I (instruction) cache remains 32 KB. This amounts to a 400% increase in L2 cache size, and a 50% increase in L3 cache size. Unlike with "Skylake-X," the increase in L2 cache size doesn't come with a decrease in shared L3 cache size (per core). The "Tiger Lake-Y" processor is being tested on a "Corktown" prototyping platform (a specialized motherboard that has all possible I/O connectivity available with the platform, for testing. "Tiger Lake" is expected to make its debut some time in 2020-21 as a successor to "Ice Lake," and will be built on Intel's refined 10 nm++ silicon fabrication node. Find the Geekbench entry in the source link below.

Intel Scraps 10nm for Desktop, Brazen it Out with 14nm Skylake Till 2022?

In a shocking piece of news, Intel has reportedly scrapped plans to launch its 10 nm "Ice Lake" microarchitecture on the client desktop platform. The company will confine its 10 nm microarchitectures, "Ice Lake" and "Tiger Lake" to only the mobile platform, while the desktop platform will see derivatives of "Skylake" hold Intel's fort under the year 2022! Intel gambles that with HyperThreading enabled across the board and increased clock-speeds, it can restore competitiveness with AMD's 7 nm "Zen 2" Ryzen processors with its "Comet Lake" silicon that offers core-counts of up to 10.

"Comet Lake" will be succeeded in 2021 by the 14 nm "Rocket Lake" silicon, which somehow combines a Gen12 iGPU with "Skylake" derived CPU cores, and possibly increased core-counts and clock speeds over "Comet Lake." It's only 2022 that Intel will ship out a truly new microarchitecture on the desktop platform, with "Meteor Lake." This chip will be built on Intel's swanky 7 nm EUV silicon fabrication node, and possibly integrate CPU cores more advanced than even "Willow Cove," possibly "Golden Cove."

Intel "Tiger Lake" Architecture Combines Willow Cove CPU Cores and Xe iGPU

Even as Intel banks on 10 nm "Ice Lake" to pull it out of the 14 nm dark ages, the company is designing a fascinating new monolithic processor SoC die that succeeds it. Codenamed "Tiger Lake," and slated to debut in 2020, this die packs "Willow Cove" CPU cores and an iGPU based on Intel's Xe architecture, not Gen11. "Willow Cove" CPU cores are more advanced than the "Sunny Cove" cores "Ice Lake" packs, featuring a redesigned on-die cache, additional security features, and transistor optimization yielded from the newer 10 nm+ silicon fabrication process.

Intel is already boasting of 1 TFLOP/s compute power of the Gen11 iGPU on "Ice Lake," so it's logical to predict that the Xe based iGPU will be significantly faster. It will also support the latest display standards. The "next-gen I/O" referenced by Intel could be faster NVMe, Thunderbolt, and USB standards that leverage the bandwidth doubling brought about by PCI-Express gen 4.0. Here's the catch: much like "Ice Lake," the new "Tiger Lake" chip will get a mobile debut as Tiger Lake-Y or Tiger Lake-U, and desktop processors could follow later, possibly even 2021, depending on how much pressure it faces from AMD.
Return to Keyword Browsing
Jan 19th, 2025 04:21 EST change timezone

New Forum Posts

Popular Reviews

Controversial News Posts