
AMD "Zen 5c" CCDs Made On More Advanced 3 nm Node Than "Zen 5"
AMD is reportedly building its upcoming "Zen 5" and "Zen 5c" CPU Core Dies (CCDs) on two different foundry nodes, a report by Chinese publication UDN, claims. The Zen 5 CCD powering the upcoming Ryzen "Granite Ridge" desktop processors, "Fire Range" mobile processors, and EPYC "Turin" server processors, will be reportedly built on the 4 nm EUV foundry node, a slightly more advanced node than the current 5 nm EUV the company is building "Zen 4" CCDs on. The "Zen 5c" CCD, or the chiplet with purely "Zen 5c" cores in a high density configuration; on the other hand, will be built on an even more advanced 3 nm EUV foundry node, the report says. Both CCDs will go into mass production in Q2-2024, with product launches expected across the second half of the year.
The "Zen 5c" chiplet has a mammoth 32 cores spread across two CCXs of 16 cores, each. Each CCX has 16 cores sharing a 32 MB L3 cache. It is to cram these 32 cores, each with 1 MB of L2 cache; and a total of 64 MB of L3 cache, that AMD could be turning to the 3 nm foundry node. Another reason could be voltages. If "Zen 4c" is anything to go by, the "Zen 5c" core is a highly compacted variant of "Zen 5," which operates at a lower voltage band than its larger sibling, without any change in IPC or instruction sets. The decision to go with 3 nm could be a move aimed at increasing clock speeds at those lower voltages, in a bid to generationally improve performance using clock speeds, besides IPC and core count. The EPYC processor with "Zen 5c" chiplets will feature no more than six such large CCDs, for a maximum core count of 192. The regular "Zen 5" CCD has just 8 cores in a single CCX, with 32 MB of L3 cache shared among the cores; and TSV provision for 3D Vertical Cache, to increase the L3 cache in special variants.
The "Zen 5c" chiplet has a mammoth 32 cores spread across two CCXs of 16 cores, each. Each CCX has 16 cores sharing a 32 MB L3 cache. It is to cram these 32 cores, each with 1 MB of L2 cache; and a total of 64 MB of L3 cache, that AMD could be turning to the 3 nm foundry node. Another reason could be voltages. If "Zen 4c" is anything to go by, the "Zen 5c" core is a highly compacted variant of "Zen 5," which operates at a lower voltage band than its larger sibling, without any change in IPC or instruction sets. The decision to go with 3 nm could be a move aimed at increasing clock speeds at those lower voltages, in a bid to generationally improve performance using clock speeds, besides IPC and core count. The EPYC processor with "Zen 5c" chiplets will feature no more than six such large CCDs, for a maximum core count of 192. The regular "Zen 5" CCD has just 8 cores in a single CCX, with 32 MB of L3 cache shared among the cores; and TSV provision for 3D Vertical Cache, to increase the L3 cache in special variants.