News Posts matching #Zen 5

Return to Keyword Browsing

RPCS3 PlayStation 3 Emulator Gets Support for Zen 5 CPUs

RPCS3, the popular PlayStation 3 emulator, has been updated to improve compatibility with upcoming AMD Zen 5 CPUs. The update addresses low performance and crash issues when running on Zen 5 CPUs by treating those processors as Zen 4. While this doesn't boost performance, it significantly improves stability. Users are encouraged to download the latest version (RPCS3 v0.0.32-16742 or newer) to benefit from this fix. Since 2023, RPCS3 has shown notable FPS improvements across various CPU types, including lower-end models.

If you're not familiar with RPCS3, it was founded by programmers DH and Hykem in May 2011. The emulator was publicly released in June 2012, quickly gaining attention from the open-source community and PlayStation enthusiasts. Today, RPCS3 is co-developed by new lead developers EladAsh and kd-11, along with many GitHub contributors.

ASUS Readies 2025 ROG Z13 Flow Gaming Tablet Powered by AMD "Strix Halo"

ASUS is betting bigger on game consoles or PCs built like consoles. The company in 2023 introduced the first ROG Z13 Flow, a gaming-grade tablet, powered by a 13th Gen Core "Raptor Lake" processor and mid-tier RTX 40-series "Ada" discrete mobile GPU. The 2025 ROG Z13 Flow is a 13-inch, 16:10 tablet with an integrated kickstand. You can use it like a handheld with touch controls, or place it on a surface and use conventional gaming peripherals, such as keyboard+mouse, or a game controller. Since the device is meant to provide a AAA gaming experience, it packs some serious kit.

Apparently, the 2025 ASUS ROG Z13 Flow will implement AMD's upcoming "Strix Halo" processor that packs up to 16 "Zen 5" CPU cores, and an oversized iGPU with 40 RDNA 3.5 compute units (2,560 stream processors), and a 256-bit LPDDR5 memory interface, besides a 50 TOPS-class NPU to qualify for Copilot+ AI PC rating. Such a chip would meet the hardware goals of the ROG Z13 Flow, and eliminate the need for a discrete GPU, letting ASUS reduce the mainboard size. The power management of "Strix Halo" would see the CPU and SoC given a roughly 30 W budget, and the iGPU roughly 80 W. Its cooling solution focuses squarely on the "Strix Halo" chip, with no other major chip on the device (the SoC is wired out to serve all chipset functions, no FCH needed).

AMD Reports Second Quarter 2024 Financial Results, Profits Up 17 Percent YoY

AMD (NASDAQ:AMD) today announced revenue for the second quarter of 2024 of $5.8 billion, gross margin of 49%, operating income of $269 million, net income of $265 million and diluted earnings per share of $0.16. On a non-GAAP(*) basis, gross margin was 53%, operating income was $1.3 billion, net income was $1.1 billion and diluted earnings per share was $0.69.

"We delivered strong revenue and earnings growth in the second quarter driven by record Data Center segment revenue," said AMD Chair and CEO Dr. Lisa Su. "Our AI business continued accelerating and we are well positioned to deliver strong revenue growth in the second half of the year led by demand for Instinct, EPYC and Ryzen processors. The rapid advances in generative AI are driving demand for more compute in every market, creating significant growth opportunities as we deliver leadership AI solutions across our business."

AMD Strix Point Silicon Pictured and Annotated

The first die shot of AMD's new 4 nm "Strix Point" mobile processor surfaced, thanks to an enthusiast on Chinese social media. "Strix Point" is a significantly larger die than "Phoenix." It measures 12.06 mm x 18.71 mm (L x W), compared to the 9.06 mm x 15.01 mm of "Phoenix." Much of this die size increase comes from the larger CPU, iGPU, and NPU. The process has been improved from TSMC N4 on "Phoenix" and its derivative "Hawk Point," to the newer TSMC N4P node.

Nemez (GPUsAreMagic) annotated the die shot in great detail. The CPU now has 12 cores spread across two CCX, one of which contains four "Zen 5" cores sharing a 16 MB L3 cache; and the other with eight "Zen 5c" cores sharing an 8 MB L3 cache. The two CCXs connect to the rest of the chip over Infinity Fabric. The rather large iGPU takes up the central region of the die. It is based on the RDNA 3.5 graphics architecture, and features 8 workgroup processors (WGPs), or 16 compute units (CU) worth 1,024 stream processors. Other key components include four render backends worth 16 ROPs, and control logic. The GPU has its own 2 MB of L2 cache that cushions transfers to the Infinity Fabric.

ASRock Silently Unveils X600TM-ITX, a Thin Mini-ITX Motherboard for AMD Zen 5 CPUs

ASRock has silently unveiled the X600TM-ITX, currently the "world's only" AM5 Thin Mini-ITX motherboard designed for AMD Ryzen 9000 "Zen 5" processors along with 8000 and 7000 series CPUs with a max TDP of 65 W. Its "Thin" Mini-ITX form factor (17.0 cm x 17.0 cm) stands out with a compact 25 mm I/O shield height compared to the standard 44 mm.

Unlike traditional Mini-ITX boards, the X600TM-ITX utilizes SODIMM memory (max. 96 GB of Dual DDR5 6400+) and supports onboard power supply via one DC Jack on the rear panel I/O, eliminating the need for a separate ATX PSU. This makes it an ideal choice for DIY mini PC enthusiasts. However, the board lacks PCIe slots for discrete GPUs, limiting its gaming potential. Nevertheless, the integrated graphics in AM5 processors should handle most games at lower settings, especially with higher-end CPUs.

GIGABYTE Latest BIOS Update Preps AM5 Motherboard for Next-Gen AMD Ryzen 9000 series Processors

GIGABYTE TECHNOLOGY Co. Ltd, a leading manufacturer of motherboards, graphics cards, and hardware solutions, announced BIOS updates for X670, B650, and A620 Motherboards to support AMD Ryzen 9000 processors. The critical BIOS updates for GIGABYTE X670, B650, and A620 series motherboards ensure the compatibility and optimized performance with the upcoming AMD Ryzen 9000 series processors.

GIGABYTE remains committed to providing the best possible experience for users and works closely with AMD to ensure prompt updates as new AGESA versions become available. Beta BIOS will be regularly updated on the GIGABYTE website. Users can easily update the BIOS using GIGABYTE's @BIOS, Q-Flash, or Q-Flash Plus technology.

AMD Ryzen 9 9950X Pre-Launch Sample Overclocked at 6 GHz

Despite the postponement of the Ryzen 9000 launch announced by AMD on Wednesday, early engineering samples used by motherboard makers reached some users (mainly overclockers). As it is the case with a pre-launch sample of AMD's flagship Ryzen 9 9950X. This CPU is equipped with 16 cores, 32 threads, a base clock frequency of 4.3 GHz with a 5.7 GHz max boost, 80 MB cache (64 MB L3 + 16 MB L2), and a TDP of 170 W.

A user overclocked the 9950X sample to 5.953 GHz using an ASUS ROG Crosshair X670E motherboard equipped with 32 GB DDR5-6000 memory. (Note: There's no information on whether air or water cooling was used.) The user then posted new results in Geekbench 5 and Geekbench 6, which demonstrate impressive performance gains for the 9950X. It's worth noting that AMD also overclocked the processor to 6.6 and even 6.7 GHz, however, they used liquid nitrogen.

AMD Ryzen "Fire Range" Mobile Processor Retains FL1 Package

AMD is readying a successor to its Ryzen 7045 series "Dragon Range" mobile processor for gaming notebooks and portable workstations. While we don't know its processor model naming yet, the chip is codenamed "Fire Range." We are learning that it will retain the FL1 package as "Dragon Range," which means it will be pin-compatible. This would significantly reduce development costs for notebook OEMs, as they can simply carry over their mainboard designs from their notebooks based on "Dragon Range."

"Fire Range" is essentially a mobile BGA version of the upcoming Ryzen 9000 "Granite Ridge" desktop processor. The FL1 package measures 40 mm x 40 mm in size, and has substrate for two CCDs and a cIOD, just like the desktop chip. "Fire Range" hence features one or two 4 nm "Zen 5" CCDs, depending on the processor model, and the 6 nm client I/O die. Much like "Dragon Range," the "Fire Range" chip will lack support for LPDDR5, and rely on conventional PC DDR5 memory in the SO-DIMM or CAMM2 form-factors. Besides the CPU core count consisting exclusively of full-sized "Zen 5" cores, the main flex for "Fire Range" over "Strix Point" will be its 28-lane PCIe Gen 5 root-complex, which can wire out the fastest discrete mobile GPUs, as well as drive multiple M.2 NVMe slots with Gen 5 wiring, and other high-bandwidth devices, such as Thunderbolt 4, USB4, or Wi-Fi 7 controllers wired directly to the processor.

AMD Delays Launch of Ryzen 9000 Series Processors

In a statement published today shortly after the release of a batch of new Zen 5 architecture details, AMD's computing and graphics SVP Jack Huynh released a statement regarding a delay to the release of the Ryzen 9000 processors based on Zen 5. Originally set to launch in just one week on July 31st, the processors have now been pushed back to a staggered release on August 8th and August 15th; one and two weeks after the initial launch window. AMD supposedly found some of the launch inventory processors did not go through proper testing procedures before being shipped out, and AMD is recalling those processors before any potential problems could have a chance to affect the first customers to buy the new chips.

The statement is as follows:
We appreciate the excitement around Ryzen 9000 series processors. During final checks, we found the initial production units that were shipped to our channel partners did not meet our full quality expectations. Out of an abundance of caution and to maintain the highest quality experiences for every Ryzen user, we are working with our channel partners to replace the initial production units with fresh units. As a result, there will be a short delay in retail availability. The Ryzen 7 9700X and Ryzen 5 9600X processors will now go on sale on August 8th and the Ryzen 9 9950X and Ryzen 9 9900X processors will go on-sale on August 15th. We pride ourselves in providing a high-quality experience for every Ryzen user, and we look forward to our fans having a great experience with the new Ryzen 9000 series.

AMD Strix Point SoC Reintroduces Dual-CCX CPU, Other Interesting Silicon Details Revealed

Since its reveal last week, we got a slightly more technical deep-dive from AMD on its two upcoming processors—the "Strix Point" silicon powering its Ryzen AI 300 series mobile processors; and the "Granite Ridge" chiplet MCM powering its Ryzen 9000 desktop processors. We present a closer look into the "Strix Point" SoC in this article. It turns out that "Strix Point" takes a significantly different approach to heterogeneous multicore than "Phoenix 2." AMD gave us a close look at how this works. AMD built the "Strix Point" monolithic silicon on the TSMC N4P foundry node, with a die-area of around 232 mm².

The "Strix Point" silicon sees the company's Infinity Fabric interconnect as its omnipresent ether. This is a point-to-point interconnect, unlike the ringbus on some Intel processors. The main compute machinery on the "Strix Point" SoC are its two CPU compute complexes (CCX), each with a 32b (read)/16b (write) per cycle data-path to the fabric. The concept of CCX makes a comeback with "Strix Point" after nearly two generations of "Zen." The first CCX contains the chip's four full-sized "Zen 5" CPU cores, which share a 16 MB L3 cache among themselves. The second CCX contains the chip's eight "Zen 5c" cores that share a smaller 8 MB L3 cache. Each of the 12 cores has a 1 MB dedicated L2 cache.

AMD Strix Point SoC "Zen 5" and "Zen 5c" CPU Cores Have 256-bit FPU Datapaths

AMD in its architecture deep-dive Q&A session with the press, confirmed that the "Zen 5" and "Zen 5c" cores on the "Strix Point" silicon only feature 256-bit wide FPU data-paths, unlike the "Zen 5" cores in the "Granite Ridge" Ryzen 9000 desktop processors. "The Zen 5c used in Strix has a 256-bit data-path, and so does the Zen 5 used inside of Strix," said Mike Clark, AMD corporate fellow and chief architecture of the "Zen" CPU cores. "So there's no delta as you move back and forth [thread migration between the Zen 5 and Zen 5c complexes] in vector throughput," he added.

It doesn't seem like AMD disabled a physically available feature, but rather, the company developed a variant of both the "Zen 5" and "Zen 5c" cores that physically lack the 512-bit data-paths. "And you get the area advantage to be able to scale out a little bit more," Clark continued. This suggests that the "Zen 5" and "Zen 5c" cores on "Strix Point" are physically smaller than the ones on the 4 nm "Eldora" 8-core CCD that is featured in "Granite Ridge" and some of the key models of the upcoming 5th Gen EPYC "Turin" server processors.

Ryzen 9000 Chip Layout: New Details Announced

AMD "Granite Ridge" is codename for the four new Ryzen 9000 series desktop processors the company plans to launch on July 31, 2024. The processor is built in the Socket AM5 package, and is meant to be backwards compatible with AMD 600-series chipset motherboards, besides the new 800-series chipset ones that will launch alongside. "Granite Ridge" is a chiplet-based processor, much like the Ryzen 7000 "Raphael," Ryzen 5000 "Vermeer," and Ryzen 3000 "Matisse." AMD is carrying over the 6 nm client I/O die over from "Raphael" in an effort to minimize development costs, much in the same way it carried over the 12 nm cIOD for "Vermeer" from "Matisse."

The SoC I/O features of "Granite Ridge" are contemporary, with its awesome 28-lane PCI-Express Gen 5 root complex that allows a PCI-Express 5.0 x16, two CPU-attached M.2 Gen 5 slots, and a Gen 5 x4 chipset bus. There's also a basic integrated graphics solution based on the older RDNA 2 graphics architecture; which should make these processors fit for all use-cases that don't need discrete graphics. The iGPU even has multimedia accelerators, an audio coprocessor, a display controller, and USB 3.2 interfaces from the processor.

AMD "Strix Halo" Processor Boosts up to 5.35 GHz, Geekbenched

AMD's upcoming "Strix Halo" mobile processor that features up to 16 "Zen 5" CPU cores and a powerful iGPU with 40 compute units, is beginning to surface in online benchmark databases. We've gone into the juicy technical bits about the processor in our older articles, but put simply, it is a powerful mobile processor meant to square off against the likes of the Apple M3 Pro and M3 Max. A chiplet-based processor, much like the upcoming "Granite Ridge" desktop processor and "Fire Range" mobile processor, "Strix Halo" features up to 16 full-sized "Zen 5" cores, as it uses up to two of the same "Eldora" CCDs as them; but wired to a large I/O die that contains the oversized iGPU, and an NPU, besides the memory controllers. The iGPU has 40 compute units (2,560 stream processors), and is based on the RDNA 3.5 graphics architecture, while the NPU is the same 50 TOPS-class unit carried over from "Strix Point."

A prototype HP laptop powered by a "Strix Halo" processor that uses a single 8-core "Zen 5" CCD, was spied on the web. This chip has eight full-sized "Zen 5" cores that share a 32 MB L3 cache. The iGPU on the I/O die has its own 32 MB Infinity Cache memory that cushions memory transfers. In our older reports, we speculated as to what the memory interface of "Strix Halo" would be. It turns out that the chip exclusively features a 256-bit wide LPDDR5X memory interface, which is double the bus width of "Strix Point." This is essentially what a "quad-channel DDR5" memory interface would be, and AMD is using a memory speed standard of at least LPDDR5X-8000. From the machine's point of view, this would be just a couple of hardwired LPDDR5X chips, or a pair of LPCAMM 2 modules. Back to the benchmarks, and we are shown a single-thread CPU score of 2099 to 2177 points, and a multithreaded score ranging between 5477 points to 13993 points. The laptop was tested with an unknown version and distribution of Linux. The CPU cores are shown boosting up to 5.35 GHz.

AMD Granite Ridge and Strix Point Zen 5 Die-sizes and Transistor Counts Confirmed

AMD is about give the new "Zen 5" microarchitecture a near-simultaneous launch across both its client segments—desktop and mobile. The desktop front is held by the Ryzen 9000 "Granite Ridge" Socket AM5 processors; while Ryzen AI 300 "Strix Point" powers the company's crucial effort to capture Microsoft Copilot+ AI PC market share. We recently did a technical deep-dive on the two. HardwareLuxx.de scored two important bits of specs for both processors in its Q&A interaction with AMD—die sizes and transistor counts.

To begin with, "Strix Point" is a monolithic silicon, which is confirmed to be built on the TSMC N4P foundry node (4 nm). This is a slight upgrade over the N4 node that the company built its previous generation "Phoenix" and "Hawk Point" processors on. The "Strix Point" silicon measures 232.5 mm² in area, which is significantly larger than the 178 mm² of "Hawk Point" and "Phoenix." The added die area comes from there being 12 CPU cores instead of 8, and 16 iGPU compute units instead of 12; and a larger NPU. There are many other factors, such as the larger 24 MB CPU L3 cache; and the sizes of the "Zen 5" and "Zen 5c" cores themselves.

AMD Ryzen 9 9950X Supports PBO After All

AMD's upcoming flagship desktop processor, the Ryzen 9 9950X, supports Precision Boost Overdrive (PBO) overclocking. In the comments section of our Zen 5 Technical Deep Dive article, a keen-eyed user noticed a footnote in one of the slides that reads that PBO is supported on Ryzen 9000 series desktop processor with the parenthesis "excluding the 9950." Add to this, the company's presentation slide for PBO on Ryzen 9000 series only highlights performance gains for the Ryzen 9 9900X, the Ryzen 7 9700X, and the Ryzen 5 9600X, but not the 9950X. We reached out to AMD seeking a clarification on this.

AMD got back to us and confirmed that the Ryzen 9 9950X does indeed support PBO overclocking: "Confirmed that PBO is supported with 9950X", just like the 9900X, 9700X, and the 9600X, and that there is an "Error in the footnotes." It would be highly unusual for AMD to disable PBO on a specific SKU, especially considering that all non-APU Ryzen processors in the past have supported PBO, not just some special overclocking SKUs, like the "K" models on Intel.

CPU-Z v2.10 Changelog Confirms Core-Config of Ryzen AI 300-series Processors

CPUID this week released the latest version of CPU-Z, and its change-log confirms the core-configurations of upcoming AMD Ryzen AI 300-series "Strix Point" processor SKUs. On paper, "Strix Point" packs a 12-core CPU based on the latest "Zen 5" microarchitecture, but there's more to this number. We've known since June 2024 that the chip has a heterogeneous multicore configuration of four full-sized "Zen 5" cores, and eight compacted "Zen 5c" cores. Only the "Zen 5" cores can reach the maximum boost frequencies rated for the chip, while the "Zen 5c" cores go a few notches above the base frequency, although it's expected that the gap in boost frequencies between the two core types is expected to slightly narrow compared to that between the "Zen 4" and "Zen 4c" cores in chips such as the "Phoenix 2."

The series is led by the AMD Ryzen AI 9 HX 375, an enthusiast segment chip that maxes out all 12 cores on the chip—that's 4x "Zen 5" and 8x "Zen 5c." This model is closely followed by the Ryzen AI 9 365, which AMD marked in its presentations as being simply a 10-core/20-thread chip. We're now learning that it has 4x "Zen 5" and 6x "Zen 5c," meaning that AMD hasn't touched the counts of its faster "Zen 5" cores. It's important to note here that "Zen 5c" is not an E-core. It supports SMT, and at base frequency, it has an identical IPC to "Zen 5." It also supports the entire ISA that "Zen 5" does.

AMD "Strix Halo" a Large Rectangular BGA Package the Size of an LGA1700 Processor

Apparently the AMD "Strix Halo" processor is real, and it's large. The chip is designed to square off against the likes of the Apple M3 Pro and M3 Max, in letting ultraportable notebooks have powerful graphics performance. A chiplet-based processor, not unlike the desktop socketed "Raphael," and mobile BGA "Dragon Range," the "Strix Halo" processor consists of one or two CCDs containing CPU cores, wired to a large die, that's technically the cIOD (client I/O die), but containing an oversized iGPU, and an NPU. The point behind "Strix Halo" is to eliminate the need for a performance-segment discrete GPU, and conserve its PCB footprint.

According to leaks by Harukaze5719, a reliable source with AMD leaks, "Strix Halo" comes in a BGA package dubbed FP11, measuring 37.5 mm x 45 mm, which is significantly larger than the 25 mm x 40 mm size of the FP8 BGA package that the regular "Strix Point," "Hawk Point," and "Phoenix" mobile processors are built on. It is larger in area than the 40 mm x 40 mm FL1 BGA package of "Dragon Range" and upcoming "Fire Range" gaming notebook processors. "Strix Halo" features one or two of the same 4 nm "Zen 5" CCDs featured on the "Granite Ridge" desktop and "Fire Range" mobile processors, but connected to a much larger I/O die, as we mentioned.

AMD Ryzen 9 9900X Benchmarked in Geekbench 6, Beats Intel's Best in Single-Core Score

As AMD prepares to roll out its next-generation Ryzen 9000 series of CPUs based on Zen 5 architecture, we are starting to see some systems being tested by third-party OEMs and system integrators. Today, we have Geekbench 6 scores of the Ryzen 9 9900X CPU, and the 12-core, 24-thread processor that has demonstrated impressive performance gains. Boasting a base clock of 4.4 GHz and a boost clock of up to 5.6 GHz, the CPU features only 120 W TDP, a significant reduction from the previous 170 W of the previous generation. In Geekbench 6 tests, the Ryzen 9 9900X achieved a single-core score of 3,401 and a multicore score of 19,756.

These results place it ahead of Intel's current flagship Core i9-14900KS, which scored 3,189 points in single-core performance. Regarding multicore tasks, the i9-14900K scored 21,890 points, still higher than AMD's upcoming 12-core SKU. The benchmark of AMD's CPU was conducted on an ASUS ROG Crosshair X670E Gene motherboard with 32 GB of DDR5 memory. As anticipation builds for the official release, these early benchmarks suggest that AMD will deliver a compelling product that balances high performance with improved energy efficiency. The top tier models will still carry a 170 W TDP, while some high-end and middle-end SKUs get a TDP reduction like the Ryzen 7 9700X and Ryzen 5 9600X dial down to 65 W, decreased from 105 W in their previous iterations.

AMD Ryzen 9000X3D Series to Keep the Same 64 MB 3D V-Cache Capacity, Offer Overclocking

AMD is preparing to release its next generation of high-performance CPUs, the Ryzen 9000X3D series, and rumors are circulating about potential increases in stacked L3 cache. However, a recent report from Wccftech suggests that the upcoming models will maintain the same 64 MB of additional 3D V-cache as their predecessors. The X3D moniker represents AMD's 3D V-Cache technology, which vertically stacks an extra L3 cache on top of one CPU chiplet. This design has proven particularly effective in enhancing gaming performance, leading AMD to market these processors as the "ultimate gaming" solutions. According to the latest information, the potential Ryzen 9 9950X3D would feature 16 Zen 5 cores with a total of 128 (64+64) MB L3 cache, while a Ryzen 9 9900X3D would offer 12 cores with the same cache capacity. The Ryzen 7 9800X3D is expected to provide 96 (32+64) MB of total L3 cache.

Regarding L2, the CPUs feature one MB of L2 cache per core. Perhaps the most exciting development for overclockers is the reported inclusion of full overclocking support in the new X3D series. This marks a significant evolution from the limited options available in previous generations, potentially allowing enthusiasts to push these gaming-focused chips to new heights of performance. While the release date for the Ryzen 9000X3D series remains unconfirmed, industry speculation suggests a launch window as early as September or October. This timing would coincide with the release of new X870 (E) chipset motherboards. PC enthusiasts would potentially wait to match the next-gen CPU and motherboards, so this should be a significant upgrade cycle for many.

Ryzen AI 300 Series: New AMD APUs Appear in CrossMark Benchmark Database

AMD's upcoming Ryzen AI 300 APUs pre-launch leaks continue, the latest coming from the BAPCo CrossMark benchmark database. Two models have been spotted: the officially announced Ryzen AI 9 HX 370 and the recently leaked Ryzen AI 7 PRO 360. The Ryzen AI 9 HX 370, part of the "Strix Point" family, boasts 12 cores and 24 threads. Its hybrid architecture combines four Zen 5 cores with eight Zen 5C cores. The chip reaches boost clocks up to 5.1 GHz, features 36 MB of cache (24 MB L3 + 12 MB L2), and includes a Radeon 890M iGPU with 16 compute units (1024 cores). The Ryzen AI 7 PRO 360, previously leaked as a 12-core part, has now been confirmed with 8 cores and 16 threads. It utilizes a 3+5 configuration of Zen 5 and Zen 5C cores, respectively. The APU includes 8 MB each of L2 and L3 cache, with a base clock of 2.0 GHz. Its integrated Radeon 870M GPU is expected to feature the RDNA 3.5 architecture with fewer cores than its higher-end counterparts, possibly 8 compute units.

According to the leaked benchmarks, the Ryzen AI 9 HX 370 was tested in an HP laptop, while the Ryzen AI 7 PRO 360 appeared in a Lenovo model equipped with LPDDR5-7500 memory. Initial scores appear unremarkable compared to top Intel Core Ultra 9 185H and AMD Ryzen 7040 APUs, however, the tested APUs may be early samples, and their performance could differ from final retail versions. Furthermore, while the TDP range is known to be between 15 W and 54 W, the specific power configurations used in these benchmarks remain unclear. The first Ryzen AI 300 laptops are slated for release on July 28th, with Ryzen AI 300 PRO models expected in October.

ASUS to Host AI PC Event on July 17, to Launch Nine Designs Based on AMD Ryzen AI 300

ASUS announced a press event on July 17 to launch at least nine notebook designs powered by AMD Ryzen AI 300 series "Strix Point" mobile processors. All these notebooks are AI PCs that meet Microsoft Copilot+ requirements. Each of the 9 designs will have several variants based on the processor model, discrete graphics, and other hardware differentiators, making up dozens of individual SKUs. The AMD "Strix Point" mobile processor is based on a 4 nm monolithic die. It combines a 12-core/24-thread CPU based on a combination of "Zen 5" and "Zen 5c" cores, a 50 TOPS-class NPU, and a powerful iGPU based on the RDNA 3.5 graphics architecture, with 16 compute units.

Among the notebook designs ASUS plans to announce on July 17 are the ROG Zephyrus G16 (GA605), the TUF Gaming A14 (FA401), the TUF Gaming A16 (FA608), the Zenbook S16 (UM5606), Vivobook S14 (M5406), Vivobook S16 (M5506 and M5606), ProArt P16 (HN7606) and ProArt PX13 (HN7306). With these, ASUS is covering pretty much all its notebook market segments, including enthusiast gaming, performance gaming, boutique ultraportability, mainstream, and creative professional.

DDR5-6400 Confirmed as Sweetspot Speed of Ryzen 9000 "Zen 5" Desktop Processors

AMD's upcoming Ryzen 9000 series "Granite Ridge" desktop processors based on the "Zen 5" microarchitecture will see a slight improvement in memory overclocking capabilities. A chiplet-based processor, just like the Ryzen 7000 "Raphael," "Granite Ridge" combines one or two "Zen 5" CCDs, each built on the TSMC 4 nm process, with a client I/O die (cIOD) built on the 6 nm node. The cIOD of "Granite Ridge" appears to be almost identical to that of "Raphael." This is the chiplet that contains the processor's DDR5 memory controllers.

As part of the update, Ryzen 9000 "Granite Ridge" should be able to run DDR5-6400 with a 1:1 ratio between the MCLK and FCLK domains. This is a slight increase from the DDR5-6000 sweetspot speed of Ryzen 7000 "Raphael" processors. AMD is reportedly making it possible for motherboard manufacturers and prebuilt OEMs to enable a 1:2 ratio, making it possible to run high memory speeds such as DDR5-8000, although performance returns with memory speeds would begin to diminish beyond the DDR5-6400 @ 1:1 setting. Memory manufacturers should launch a new wave of DDR5 memory kits with AMD EXPO profiles for DDR5-6400.

AMD to Revise Specs of Ryzen 7 9700X to Increase TDP to 120W, to Beat 7800X3D

AMD's Ryzen 9000 "Granite Ridge" family of Socket AM5 desktop processors based on the "Zen 5" microarchitecture arrive in July, with four processor models in the lead—the 9950X 16-core, the 9900X 12-core, the 9700X 8-core, and the 9600X 6-core. AMD is building the CCDs (CPU core dies) of these processors on the slightly newer 4 nm foundry node, compared to the 5 nm node that the Ryzen 7000 series "Raphael" processors based on "Zen 4" are built on; and generally lowered the TDP values of all but the top 16-core part. The company is reportedly reconsidering these changes, particularly in wake of company statements that the 9000X series may not beat the 7000X3D series in gaming performance, which may have sullied the launch, particularly for gamers.

From the company's Computex 2024 announcement of the Ryzen 9000 series, the 9950X has the same 170 W TDP as its predecessor, the 7950X. The 9900X 12-core part, however, comes with a lower 120 W TDP compared to the 170 W of the 7900X. Things get interesting with the 8-core and 6-core parts. Both the 9700X 8-core, and the 9600X 6-core chips come with 65 W TDP. The 9700X succeeds the 7700X, which came with a 105 W TDP, while the 9600X succeeds the 7600X that enjoys the same 105 W TDP. The TDP and package power tracing (PPT) values of an AMD processor are known to affect CPU boost frequency residence, particularly in some of the higher core-count SKUs. Wccftech reports that AMD is planning to revise the specifications of at least the Ryzen 7 9700X.

AMD Ryzen AI 300 Pro Series Could be Equipped with up to 128 GB of Memory

According to the leaked listing posted on X by user @Orlak29_, reports suggest that Pro versions of the AMD Ryzen 7 AI and Ryzen 9 AI are in the pipeline, with a potential game-changer in the form of the high-end "Strix Halo" model. The standout feature of the Strix Halo is its rumored support for up to 128 GB of RAM, a significant leap from AMD's current offerings. This massive memory capacity could prove valuable for AI workloads and data-intensive applications, potentially positioning AMD better against offerings from Intel and Qualcomm. Leaked diagrams hint at a unique design for the Strix Halo, featuring a chiplet layout reminiscent of a graphics card. The processor is reportedly surrounded by memory on three sides, enabling the massive 128 GB capacity.

While this top-tier model is expected to carry a premium price, it could find a ready market among professionals and enthusiasts demanding both raw processing power and extensive memory resources. On the performance front, rumors suggest the Strix Halo will boast up to 16 Zen 5 cores and a GPU with 40 Compute Units based on RDNA 3.5 architecture. This combination might rival the performance of high-end mobile GPUs like the RTX 4060 or even the RTX 4070 for laptops.
As with previous generations, AMD is expected to release Pro versions of these processors with additional features like ECC memory support.

Retailers Leaked AMD Zen 5 Release Date and Prices

AMD's Zen 5 Ryzen 9000 "Granite Ridge" series desktop processors are expected to be released on July 31st. The Ryzen AI 300 "Strix Point" series notebooks will hit stores earlier, on July 15th. This information comes from product listings on various e-commerce sites, as reported by ITHome and Videocardz. Additionally, a BestBuy listing shows one ASUS laptop with a Ryzen AI 300 "Strix Point" CPU launching on July 15th, ahead of the desktop processor release.

ITHome also reported potential retail prices for the AMD Ryzen 9 series CPUs, at least for the Philippine market. Worldwide prices may be lower or higher depending on taxes in each region.
  • Ryzen 9 9950X: $648
  • Ryzen 9 9900X: $597
  • Ryzen 7 9700X: $409
  • Ryzen 5 9600X: $315
Return to Keyword Browsing
Nov 21st, 2024 06:29 EST change timezone

New Forum Posts

Popular Reviews

Controversial News Posts