News Posts matching #i5-L16G7

Return to Keyword Browsing

Windows 10 Scheduler Aware of "Lakefield" Hybrid Topologies, Benchmarked

A performance review of the Intel Core i5-L16G7 "Lakefield" Hybrid processor (powering a Samsung Galaxy S notebook) was recently published by Golem.de, which provides an in-depth look at Intel's ambitious new processor design that sets in motion the two new philosophies Intel will build its future processors on - packaging modularity provided by innovative new chip packaging technologies such as Foveros; and Hybrid processing, where there are two sets of CPU cores with vastly different microarchitectures and significantly different performance/Watt curves that let the processor respond to different kinds of workloads while keeping power-draw low. This concept was commercially proliferated first by Arm, with its big.LITTLE topology that took to the market around 2013. The "Lakefield" i5-L16G7 combines a high-performance "Sunny Cove" CPU core with four smaller "Tremont" cores, and Gen11 iGPU.

The Golem.de report reveals that Windows 10 thread scheduler is aware of the hybrid multi-core topology of "Lakefield," and that it is able to classify workloads at a very advanced level so the right kind of core is in use at any given time. The "Sunny Cove" core is called upon when interactive vast serial processing loads are in demand. This could even be something like launching applications, new tabs in a multi-process web-browser, or less-parallelized media encoding. The four "Tremont" cores keep the machine "cruising," handling much of the operational workload of an application, and is also better tuned to cope with highly parallelized workloads. This is similar to a hybrid automobile, where the combustion engine provides tractive effort from 0 kph, while the electric motor sustains a cruising speed.

Intel Lakefield Core i5-L16G7 Performance Benchmarks Leak

Performance benchmarks have started leaking for Intel-s upcoming Lakefield CPUs - low-power SoCs designed with Intel's latest technology. The Lakefield family of CPUs will make use of an Arm-similar big.LITTLE design, where this particular CPU, the Core i5-L16G7, will ship with four low-power "Tremond" cores and one large, high-performance "Sunny Cove" core for peak workloads. Built using Intel's Foveros stacking technology, these are the first chips to be built on Intel's modular platform, which should allow for pairing of I/O dies, chiplet-like CPU arrangements and memory in a 3D package. Physical distance reductions impact latency and power consumption, which should allow for an interesting design result.

Notebookcheck has tested an Intel Lakefield Core i5-L16G7 CPU that's being deployed on upcoming Samsung's Galaxy Book S, and the results are sort of a mixed bag. For one, Intel's Lakefield seems to be around 67% slower than the company's previous ultra-low-power architecture, Amber Lake. Something of this might have been caused by the fact that the Lakefield CPU didn't boost towards its advertised 3.0 GHz; it only managed to reach 2.4 GHz, which obviously hampered performance. Perhaps pre-release silicon is the culprit, or perhaps it's the galaxy Book S that's been configured with more restrictive thermal and power characteristics than the chip was actually designed to run at. The chip did manage to run the FireStrike test beating the Amber Lake-based Acer Swift 7 by 23%, though, so not all is looking bleak.

First Intel "Lakefield" Powered Samsung Galaxy Book S Listed on the Company's Canadian Store

One of the first Intel "Lakefield" heterogenous processor-powered devices, a Samsung Galaxy Book S model, is listed by Samsung on its Canadian online store. The Galaxy Book series typically consists of Arm-powered clamshell/convertible notebooks that use Windows 10 (Arm version). The device in question is a Galaxy Book S 13.3-inch notebook bearing model number NP767XCM-K01CA, and comes in two color trims - "Mercury Gray" and "Earthy Gold."

Under the hood is an Intel Core i5-L16G7 "Lakefield" heterogenous processor that has four "Tremont" low-power cores, and a "Sunny Cove" high-performance cores, in an arrangement rivaling Arm big.LITTLE, the first of many such chips from the company, as it taps into new technologies such as heterogenous cores and advanced Foveros chip packaging to design its future processors. The notebook offers Full HD resolution, 8 GB of RAM, 256 GB or 512 GB of solid-state NVMe storage, 802.11ax 2x2 WLAN, and a 42 Wh battery, possibly with double-digit hour battery life. All of this goes into a 6.2 mm (folded) device weighing under a kilogram.

Intel Core i5-L16G7 is the first "Lakefield" SKU Appearance, Possible Prelude to New Nomenclature?

Intel Core i5-L16G7 is the first commercial SKU that implements Intel's "Lakefield" heterogenous x86 processor architecture. This 5-core chip features one high-performance "Sunny Cove" CPU core, and four smaller "Tremont" low-power cores, with an intelligent scheduler balancing workloads between the two core types. This is essentially similar to ARM big.LITTLE. The idea being that the device idles most of the time, when lower-powered CPU cores can hold the fort; performance cores kick in only when really needed, until which time they remain power-gated. Thai PC enthusiast TUM_APISAK discovered the first public appearance of the i5-L16G7 in an unreleased Samsung device that has the Userbenchmark device ID string "SAMSUNG_NP_767XCL."

Clock speeds of the processor are listed as "1.40 GHz base, with 1.75 GHz turbo," but it's possible that the two core types have different clock-speed bands, just like the cores on big.LITTLE SoCs. Other key components of "Lakefield" include an iGPU based on the Gen11 graphics architecture, and an LPDDR4X memory controller. "Lakefield" implements Foveros packaging, in which high-density component dies based on newer silicon fabrication nodes are integrated with silicon interposers based on older fabrication processes, which facilitate microscopic high-density wiring between the dies. In case of "Lakefield," the Foveros package features a 10 nm "compute field" die sitting atop a 22 nm "base field" interposer.
Return to Keyword Browsing
Aug 15th, 2024 05:20 EDT change timezone

New Forum Posts

Popular Reviews

Controversial News Posts