News Posts matching #vulnerability

Return to Keyword Browsing

Google's Project Zero Discovers 18 Zero-Day Vulnerabilities in Exynos Chipsets

Google's internal team Project Zero, dedicated to the discovery and patching of zero-day vulnerabilities in mobile hardware, software, web browsers and open source libraries disclosed a series of vulnerabilities in Samsung's Exynos chipsets featured across a wide range of mobile devices. Four of these critical vulnerabilities allow for internet-to-baseband remote code execution, and testing conducted by Project Zero confirmed that an attacker can compromise a phone at the baseband level with only the victim's phone number. They believe that with sufficient skill an attacker could exploit these vulnerabilities completely silently and remotely. The fourteen other vulnerabilities are related but considered to not be as critical as they require a more extensive setup including a malicious mobile network operator or local access to the targeted device.

Due to the severity of the main four critical vulnerabilities Project Zero has delayed full disclosure on how the exploit works stating:
Due to a very rare combination of level of access these vulnerabilities provide and the speed with which we believe a reliable operational exploit could be crafted, we have decided to make a policy exception to delay disclosure for the four vulnerabilities that allow for Internet-to-baseband remote code execution.

Microsoft Releases Windows Patches, Fixes Actively Exploited Zero-Day Vulnerabilities

Microsoft today unleashed a slew of updates for its March Patch Tuesday to address around 80 security vulnerabilities in the wild. To begin, Windows 10 patches KB5023696 and KB5023697 address system and security issues in Windows 10 versions 22H2, 21H2, 21H1, 1809, and 1607 as well as Windows Server 2016. These are being deployed as non-optional updates and will be automatically installed via Windows Update (unless you run a modified or locked down install). Windows 10 1507 also received a small patch, KB5023713, which similarly addresses security fixes as well as hyperlinks in Excel.

Microsoft today also releases fixes for two critical zero-day vulnerabilities that were being actively exploited as far back as April of 2022. The two exploited vulnerabilities are CVE-2023-23397 and CVE-2023-24880. CVE-2023-23397 is an elevated privilege attack that allows crafting special emails that can force a target's device to connect to remote URLs and transmit the Windows account's Net-NTLMv2 hash. CVE-2023-24880 is a Windows SmartScreen vulnerability that can be exploited to create executables which bypass the Windows Mark of the Web security warning.

Phoenix Technologies Launches FirmGuard to Protect Against Firmware Vulnerabilities

Phoenix Technologies, a leading independent firmware supplier for PCs and computing devices, has launched FirmGuard, a cyber security product to address firmware vulnerability. Firmware is the software that connects a device's microchips to the operating system.

Phoenix Technologies is the first UEFI (Unified Extensible Firmware Interface) vendor to offer an enterprise cyber security product. FirmGuard is a cloud-based service, which has been initially targeted at managed service providers (MSPs). It will also be offered to large enterprise and government organizations.

QNAP Responds to Vulnerability Reports in Hikvision Cameras and Provides Recommendations to QNAP QVR Pro and QVR Elite Users

After a thorough investigation and verification process, QNAP Systems, Inc. (QNAP) today addressed vulnerability CVE-2021-36260 of Hikvision cameras and provides the following recommendations to QVR Pro and QVR Elite users who may be potentially affected. According to the security advisory by Hikvision, if these cameras are installed in the same LAN network, and this network cannot be accessed externally, attackers will NOT be able to exploit this vulnerability.

Although this vulnerability does not directly influence QNAP surveillance products, it is highly recommended to update the firmware of the cameras listed in the advisory to reduce the possibility of being exposed to potential risks. These risks include, but is not limited to, failure to record from cameras that stop working, or receiving forged data from cameras.

ÆPIC Leak is an Architectural CPU Bug Affecting 10th, 11th, and 12th Gen Intel Core Processors

The x86 CPU family has been vulnerable to many attacks in recent years. With the arrival of Spectre and Meltdown, we have seen side-channel attacks overtake both AMD and Intel designs. However, today we find out that researchers are capable of exploiting Intel's latest 10th, 11th, and 12th generation Core processors with a new CPU bug called ÆPIC Leak. Named after Advanced Programmable Interrupt Controller (APIC) that handles interrupt requests to regulate multiprocessing, the leak is claimeing to be the first "CPU bug able to architecturally disclose sensitive data." Researchers Pietro Borrello (Sapienza University of Rome), Andreas Kogler (Graz Institute of Technology), Martin Schwarzl (Graz), Moritz Lipp (Amazon Web Services), Daniel Gruss (Graz University of Technology), and Michael Schwarz (CISPA Helmholtz Center for Information Security) discovered this flaw in Intel processors.
ÆPIC Leak is the first CPU bug able to architecturally disclose sensitive data. It leverages a vulnerability in recent Intel CPUs to leak secrets from the processor itself: on most 10th, 11th and 12th generation Intel CPUs the APIC MMIO undefined range incorrectly returns stale data from the cache hierarchy. In contrast to transient execution attacks like Meltdown and Spectre, ÆPIC Leak is an architectural bug: the sensitive data gets directly disclosed without relying on any (noisy) side channel. ÆPIC Leak is like an uninitialized memory read in the CPU itself.

A privileged attacker (Administrator or root) is required to access APIC MMIO. Thus, most systems are safe from ÆPIC Leak. However, systems relying on SGX to protect data from privileged attackers would be at risk, thus, have to be patched.

"Hertzbleed" Exploits Intel and AMD Boost Frequencies to Steal Crypto Keys

In 2017, the semiconductor world was shocked to discover new vulnerabilities in modern Intel, AMD, and Arm processors. Dubbed Spectre and Meltdown, these exploits used cache-based side-channel attacks to steal information from the system. Today, we are getting a more advanced side-channel vulnerability hidden in every CPU capable of boosting frequencies. Interestingly called "Heartzbleed," the new exploit can steal secret AES cryptographic keys when observing CPU's boost frequencies. The attack works by monitoring the power signature of any cryptographic workload. As with any other element in a CPU, the workload's power varies according to the processor's frequency scaling in different situations. Observing this power information can be converted into timing data, allowing an attacker to steal cryptographic keys. This is done using Dynamic Voltage Frequency Scaling (DVFS), a part of any modern processor.

Intel and AMD already published that their systems are vulnerable and affected by Heartzbleed exploit. It is labeled Intel-SA-00698 ID and CVE-2022-24436 ID for Intel CPUs and CVE-2022-23823 for AMD CPUs. It affects all Intel processors, and Zen 2 and Zen 3 AMD CPUs. The attacker can exploit this vulnerability remotely without requiring physical access. Intel and AMD will not offer microcode mitigations that should prevent this type of exploit from executing successfully. Additionally, Intel stated that this attack is not very practical outside of laboratory research, as it allegedly takes hours to days to steal cryptographic keys. The performance penalty for mitigating this attack ranges from high to low, depending on the type of implementation.

Apple M1 Chips Affected by Unpatchable "PACMAN" Exploit

Apple M1 chips are a part of the Apple Silicon family that represents a new transition to Arm-based cores with new power and performance targets for Apple devices. A portion of building a processor is designing its security enclave, and today we have evidence that M1 processors got a new vulnerability. The PACMAN is a hardware attack that can bypass Pointer Authentication (PAC) on M1 processors. Security researchers took an existing concept of Spectre and its application in the x86 realm and now applied it to the Arm-based Apple silicon. PACMAN exploits a current software bug to perform pointer authentication bypass, which may lead to arbitrary code execution.

The vulnerability is a hardware/software co-design that exploits microarchitectural construction to execute arbitrary codes. PACMAN creates a PAC Oracle to check if a specific pointer matches its authentication. It must never crash if an incorrect guess is supplied and the attack brute-forces all the possible PAC values using the PAC Oracle. To suppress crashes, PAC Oracles are delivered speculatively. And to learn if the PAC value was correct, researchers used uArch side channeling. In the CPU resides translation lookaside buffers (TLBs), where PACMAN tries to load the pointer speculatively and verify success using the prime+probe technique. TLBs are filled with minimal addresses required to supply a particular TLB section. If any address is evicted from the TLB, it is likely a load success, and the bug can take over with a falsely authenticated memory address.
Apple M1 PACMAN Attack

Cloudflare: Blockchain Platform Targeted by One of Most Powerful DDoS Attacks in History

Internet services provider Cloudflare has announced that it has successfully protected one of its clients from one of the most powerful DDoS (Distributed-Denial-of-Service) attacks in history. According to the services provider, an undisclosed cryptocurrency platform was targeted by a botnet comprising around 6,000 "zombie" computers distributed throughout 112 different countries. The botnet ultimately generated a collective 15.3 million requests per second. While that's still shy of the largest recorded metric - set at 17.2 million requests per second - the fact that the DDoS attack occurred through HTTPS likely pushed its complexity above the record-setting attack, due to the higher computational workload of secure HTTP. The attack lasted 15 seconds.

DDoS attacks aim to flood a network with requests and data packets in a bid to overload and paralyze it. The attack also showcases the ingenuity of bad actors, as the originated from cloud-based ISPs, as attackers leverage more complex and capable networking hardware than what's usually offered by last-mile ISPs. According to Cloudflare, the botnet seems to have mostly compromised systems with Java-based applications that were still open to the recently-discovered CVE-2022-21449 vulnerability.

CISA Advises Owners of Certain D-Link Routers to Urgently Retire Them

The US Cybersecurity and Infrastructure Security Agency, or CISA, is advising consumers and businesses to retire a whole range of D-Link routers, due to the devices being EOL. This is due to a severe vulnerability that affects the devices that goes under the CVE-ID of CVE-2021-45382. This is a remote command execution (RCE) vulnerability and it's not likely to get patched by D-Link and is considered serious enough that these devices should be taken offline post-haste. The vulnerability would allow an attacker to take over these devices using "diagnostic hooks" in the ncc2 service, which is tied to the DDNS function and would allow an attacker to gain full access by injecting malicious code.

Proof of concept code already exists on GitHub, which makes the likelihood of this attack vector being used even more likely. The known affected devices so far are the D-Link DIR-810L, DIR-820L/LW, DIR-826L, DIR-830L, and DIR-836L and all hardware revisions are affected. Most of these routers were released around 2012 to 2014 and are either 802.11n or 802.11ac devices based on what appears to be Realtek or Ralink (now MediaTek) hardware. These aren't the only devices that CISA has given advice on recently, as the D-Link DIR-610 and DIR-645, as well as the Netgear DGN2200 are also devices that CISA recommends retirement for.

Intel Launches Project Circuit Breaker

Intel is expanding its Bug Bounty program with Project Circuit Breaker, bringing together a community of elite hackers to hunt bugs in firmware, hypervisors, GPUs, chipsets and more. Project Circuit Breaker broadens and deepens Intel's existing open Bug Bounty program by hosting targeted time-boxed events on specific new platforms and technologies, providing training and creating opportunities for more hands-on collaboration with Intel engineers. Project Circuit Breaker's first event, Camping with Tigers, is already underway with a group of 20 researchers who received systems with Intel Core i7 processors (formerly "Tiger Lake").

Project Circuit Breaker is possible thanks to our cutting-edge research community. This program is part of our effort to meet security researchers where they are and create more meaningful engagement. We invest in and host bug bounty programs because they attract new perspectives on how to challenge emerging security threats - and Project Circuit Breaker is the next step in collaborating with researchers to strengthen the industry's security assurance practices, especially when it comes to hardware. We look forward to seeing how the program will evolve and to introducing new voices to the meaningful work that we do."
-Katie Noble, director, Intel Product Security Incident Response Team (PSIRT) and Bug Bounty

Intel Disables DirectX 12 API Loading on Haswell Processors

Intel's fourth-generation Core processors, codenamed Haswell, are subject to new security exploits. According to the company, a vulnerability exists inside the graphics controller of 4th generation Haswell processors, happening once the DirectX 12 API loading occurs. To fix the problem, Intel has found that disabling this API results in a fix. Starting with Intel graphics driver 15.40.44.5107 applications that run exclusively on DirectX 12 API no longer work with the following Intel Graphics Controllers: Intel Iris Pro Graphics 5200/5100, HD Graphics 5000/4600/4400/4200, and Intel Pentium and Celeron Processors with Intel HD Graphics based on 4th Generation Intel Core.

"A potential security vulnerability in Intel Graphics may allow escalation of privilege on 4th Generation Intel Core processors. Intel has released a software update to mitigate this potential vulnerability. In order to mitigate the vulnerability, DirectX 12 capabilities were deprecated." says the Intel page. If a user with a Haswell processor has a specific need to run the DirectX 12 application, they can downgrade their graphics driver to version 15.40.42.5063 or older.

Update for "Yet Another Hardware Trainwreck" Lands in Linux Kernel as an Urgent Fix for x86 Processors

The x86 instruction set architecture has experienced many issues, and today's announcement is no exception. Yesterday morning, the Linux kernel received an urgent set of patches that are supposed to fix "yet another hardware trainwreck," as Thomas Gleixner, the kernel developer, describes. This time, the problem occurs with the high precision event timer (HPET) that stops once x86 processors reach PC10 idle state. In that event, the timer stops even when the OS/kernel uses it and could potentially cause a vulnerability inside a processor that an attacker can exploit. The problem has been known for quite a while since, in 2019, the Linux kernel started removing HPET functionality from some Intel processors.

The priority of this patch for Linux Kernel version 5.15-rc5 is high and marked as an urgent update. A reliable hardware timer and an interrupt are a must for the proper function of a processor. The hardware fix for this will not happen soon, so the Linux kernel has to adapt to it and create a solution at the software level. According to Mr. Gleixner, "The probability that this problem is going to be solved in the forseeable future is close to zero, so the kernel has to be cluttered with heuristics to keep up with the ever growing amount of hardware and firmware trainwrecks. Hopefully some day hardware people will understand that the approach of "This can be fixed in software" is not sustainable. Hope dies last..."

Meltdown-like Vulnerability Affects AMD Zen+ and Zen2 Processors

Cybersecurity researchers Saidgani Musaev and Christof Fetzer with the Dresden Technology University discovered a novel method of forcing illegal data-flow between microarchitectural elements on AMD processors based on the "Zen+" and "Zen 2" microarchitectures, titled "Transient Execution of Non-canonical Accesses." The method was discovered in October 2020, but the researchers followed responsible-disclosure norms, giving AMD time to address the vulnerability and develop a mitigation. The vulnerability is chronicled under CVE-2020-12965 and AMD Security Bulletin ID "AMD-SB-1010."

The one-line summary of this vulnerability from AMD reads: "When combined with specific software sequences, AMD CPUs may transiently execute non-canonical loads and store using only the lower 48 address bits, potentially resulting in data leakage." The researchers studied this vulnerability on three processors, namely the EPYC 7262 based on "Zen 2," and Ryzen 7 2700X and Ryzen Threadripper 2990WX, based on "Zen+." They mention that all Intel processors that are vulnerable to MDS attacks "inherently have the same flaw." AMD is the subject of the paper as AMD "Zen+" (and later) processors are immune to MDS as demonstrated on Intel processors. AMD developed a mitigation for the vulnerability, which includes ways of patching vulnerable software.

Find the security research paper here (PDF), and the AMD security bulletin here. AMD's mitigation blueprint can be accessed here.

PrintNightmare: Microsoft Issues Critical Security Updates for Multiple Versions of Windows

Remember that hideous, remotely exploitable vulnerability on Windows' Print Spooler service, which would enable remote attackers to run code with administrator privileges on your machine? Well, Microsoft seems to be waking up from this particular instance of PrintNightmare, as the company has already issued critical, out-of-band security updates (meaning that they're outside Microsoft's cadenced patch rollout) for several versions of windows. Since the Print Spooler service runs by default and is an integral part of Windows releases (likely since the NT platform development), Microsoft has even pushed out patches to OSs that aren't currently supported.

Microsoft has issued correctives for Windows Server 2019, Windows Server 2012 R2, Windows Server 2008, Windows 8.1, Windows RT 8.1, a variety of supported versions of Windows 10, and even Windows 7. As per Microsoft, Windows Server 2012, Windows Server 2016, and Windows 10 Version 1607 products are still missing the security patches, but they're being actively worked on and should be released sooner rather than later. The security patches include mitigations for both the PrintNightmare issue (CVE-2021-34527), as well as another Print Spooler vulnerability that's been previously reported (CVE-2021-1675). The mitigations are being distributed via Windows Update, as always, and the relevant packages are KB5004945 through KB5004959 (depending on your version of Windows).

Microsoft Acknowledges Severe, Unpatched, Actively Exploited Print Spooler Service Vulnerability "PrintNightmare"

Microsoft has acknowledged the existence of a severe and currently unpatched vulnerability in Windows' Print Spooler service (CVE-2021-34527). The vulnerability affects all versions of Windows, and is being actively exploited as per Microsoft. Poetically named "PrintNightmare", the vulnerability was published earlier this week as a PoC (Proof of Concept) exploit by security researchers, which believed the flaw had already been addressed by Microsoft at time of release (the company patched up another Print Spooler vulnerability issue with the June 2021 security patch). The code was made public and quickly scrapped when developers realized it gave would-be bad actors access to an unpatched way into users' systems - but since it's the Internet, the code had already been forked in GitHub.

The vulnerability isn't rated by the Windows developer as of yet, but it's one of the bad ones: it allows attackers to remotely execute code with system-level privileges. This is the ultimate level of security vulnerability that could exist. Microsoft is currently investigating the issue and developing a patch; however, given the urgency in closing down this exploit, the company is recommending disabling of the Windows Print Spooler service wherever possible, or at least disabling inbound remote printing through Group Policy. If you don't have a printer, just disable the service; if you do, please disable the Group Policy as per the steps outlined in the image below.

Hundreds of Millions of Dell Laptops and Desktops Vulnerable to Privilege Escalation Attacks

Dell notebooks and desktops dating all the way back since 2009—hundreds of millions of them the PC giant has shipped since—are vulnerable to unauthorized privilege escalation attacks, due to a faulty OEM driver the company uses to update the computer's BIOS or UEFI firmware, according to findings by cybersecurity researchers at SentinelLabs. "DBUtil," a driver that Dell machines load during automated or unattended BIOS/UEFI update processes initiated by the user from within the OS, is found to have vulnerabilities that malware can exploit to "escalate privileges from a non-administrator user to kernel mode privileges."

SentinelLabs chronicled its findings in CVE-2021-21551, which details five individual flaws. Two of these point out flaws that can escalate user privileges through controlled memory corruption, two with lack of input validation; and one with denial of service. Organizations that have remote updates enabled for their client machines are at risk, since the flaw can be exploited over network. "An attacker with access to an organization's network may also gain access to execute code on unpatched Dell systems and use this vulnerability to gain local elevation of privilege. Attackers can then leverage other techniques to pivot to the broader network, like lateral movement," writes SentielLabs in its paper.

New Spectre Vulnerability Version Beats All Mitigations, Performance to Badly Degrade After the Fix

Researches from the University of Virginia and University of California San Diego have published their latest case study. The two universities have worked hard to discover a new Spectre vulnerability variant that can pass all of the existing Spectre mitigations and exploit all of the existing processors coming from Intel and AMD. The vulnerability exploits all of the existing x86 processors, and as it is new, there are not implementations of hardware mitigation. The whitepaper called "I see dead μops" takes the implementation of exploiting micro-op caches that could lead to a potential data leak in the processor, which is leading to a Spectre-type exploit.

Modern x86 processors break down complex instructions into smaller RISC-like units called micro-ops, in the frontend, where it makes the design of the backend part much simpler. The micro-ops are stored in the micro-ops cache. The paper is describing micro-op cache-based timing channel exploits in three primary settings: "a) across code regions within the same thread, but operating at different privilege levels, (b) across different co-located threads running simultaneously on different SMT contexts (logical cores) within the same physical core, and (c) two transient execution attack variants that leverage the micro-op cache to leak transiently accessed secrets, bypassing several existing hardware and software-based mitigations, including Intel's recommended LFENCE."

AMD Ryzen 5000 Series CPUs with Zen 3 Cores Could be Vulnerable to Spectre-Like Exploit

AMD Ryzen 5000 series of processors feature the new Zen 3 core design, which uses many techniques to deliver the best possible performance. One of those techniques is called Predictive Store Forwarding (PSF). According to AMD, "PSF is a hardware-based micro-architectural optimization designed to improve the performance of code execution by predicting dependencies between loads and stores." That means that PSF is another "prediction" feature put in a microprocessor that could be exploited. Just like Spectre, the feature could be exploited and it could result in a vulnerability in the new processors. Speculative execution has been a part of much bigger problems in CPU microarchitecture design, showing that each design choice has its flaws.

AMD's CPU architects have discovered that the software that relies upon isolation aka "sandboxing", is highly at risk. PSF predictions can sometimes miss, and it is exactly these applications that are at risk. It is reported that a mispredicted dependency between load and store can lead to a vulnerability similar to Spectre v4. So what a solution to it would be? You could simply turn it off and be safe. Phoronix conducted a suite of tests on Linux and concluded that turning the feature off is taking between half a percent to one percent hit, which is very low. You can see more of that testing here, and read AMD's whitepaper describing PSF.

Acer Reportedly Hit By $50 Million Ransomware Attack

Acer has reportedly been hit with a REvil ransomware attack covering financial spreadsheets, bank balances, and bank communications. The actors are demanding a 50 million USD ransom which is one of the highest amounts ever demanded in a breach of this type. Acer has not confirmed the report instead stating that they "reported recent abnormal situations" to the relevant authorities. Communication between REvil and Acer began on March 14th with the attackers demanding payment in XMR cryptocurrency via a Tor website in return for the decryptor, a vulnerability report, and the deletion of stolen files. The cause of the attack appears to be a vulnerability in Microsoft Exchange which has now been patched but was not updated by Acer. The group is demanding payment before March 28th or the price will double to 100 million USD.

AMD Graphics Drivers Have a CreateAllocation Security Vulnerability

Discovering vulnerabilities in software is not an easy thing to do. There are many use cases and states that need to be tested to see a possible vulnerability. Still, security researchers know how to find those and they usually report it to the company that made the software. Today, AMD has disclosed that there is a vulnerability present in the company graphics driver powering the GPUs and making them work on systems. Called CreateAllocation (CVE-2020-12911), the vulnerability is marked with a score of 7.1 in the CVSSv3 test results, meaning that it is not a top priority, however, it still represents a big problem.

"A denial-of-service vulnerability exists in the D3DKMTCreateAllocation handler functionality of AMD ATIKMDAG.SYS 26.20.15029.27017. A specially crafted D3DKMTCreateAllocation API request can cause an out-of-bounds read and denial of service (BSOD). This vulnerability can be triggered from a guest account, " says the report about the vulnerability. AMD states that a temporary fix is implemented by simply restarting your computer if a BSOD happens. The company also declares that "confidential information and long-term system functionality are not impacted". AMD plans to release a fix for this software problem sometime in 2021 with the new driver release. You can read more about it here.

Vulnerabilities in Qualcomm Snapdragon's DSP May Render 1 Billion Android Phones Vulnerable to Hacking

Vulnerabilities in Qualcomm's DSP (Digital Signal Processor) present in the company's Snapdragon SoCs may render more than a billion Android phones susceptible to hacking. According to research reported this week by security firm Check Point, they've found more than 400 vulnerabilities in Snapdragon's DSP, which may allow attackers to monitor locations, listen to nearby audio in real time, and exfiltrate locally-stored photos and videos - besides being able to render the phone completely unresponsive.

The vulnerabilities (CVE-2020-11201, CVE-2020-11202, CVE-2020-11206, CVE-2020-11207, CVE-2020-11208 and CVE-2020-11209) can be exploited simply via a video download or any other content that's rendered by the chip that passes through its DSP. Targets can also be attacked by installing malicious apps that require no permissions at all. Qualcomm has already tackled the issue by stating they have worked to validate the issue, and have already issued mitigations to OEMs, which should be made available via software updates in the future. In the meantime, the company has said they have no evidence any of these flaws is being currently exploited, and advise all Snapdragon platform users to only install apps via trusted locations such as the Play Store.

New BootHole Vulnerability Affects Billions of Devices, Compromises GRUB2 Boot-loader

Even if you don't have more than one operating system installed, your PC has a boot-loader, a software component first executed by the system BIOS, which decides which operating system to boot with. This also lets users toggle between different run-levels or configurations of the same OS. The GRUB2 boot-loader is deployed across billions of computers, servers, and pretty much any device that uses a Unix-like operating system. Cybersecurity researchers with Oregon-based firm Eclypsium, discovered a critical vulnerability with GRUB2 that can compromise a device's operating system. They named the vulnerability BootHole. This is the same firm behind last year's discovery of the Screwed Drivers vulnerability. It affects any device that uses the GRUB2 boot-loader, including when combined with Secure Boot technology.

BootHole exploits a design flaw with two of the key components of GRUB2, bison, a parser generator, and flex, a lexical analyzer. Eclypsium discovered that these two can have "mismatched design assumptions" that can lead to buffer overflow. This buffer overflow can be exploited to execute arbitrary code. Devices with modern UEFI and Secure Boot enabled typically wall off even administrative privileged users off from tampering with boot processes, however, in case of BootHole, the boot-loader parses a configuration file located in the EFI partition of the boot device, which can be modified by any user (or malicious process) that has admin privileges. Thankfully, patched versions of GRUB2 are already out, and the likes of SUSE have started distributing it for all versions of SUSE Linux. Expect practically every other *nix vendor, server manufacturer, to release patches to their end-users. Find a technical run-down of the vulnerability in this PDF by Eclypsium.

New SMM Callout Privilege Escalation Vulnerability Affects AMD Platforms

AMD on Wednesday disclosed a new security vulnerability affecting certain client- and APU processors launched between 2016 and 2019. Called the SMM Callout Privilege Escalation Vulnerability, discovered by Danny Odler, and chronicled under CVE-2020-12890, the vulnerability involves an attacker with elevated system privileges to manipulate the AGESA microcode encapsulated in the platform's UEFI firmware to execute arbitrary code undetected by the operating system. AMD plans to release AGESA updates that mitigate the vulnerability (at no apparent performance impact), to motherboard vendors and OEMs by the end of June 2020. Some of the latest platforms are already immune to the vulnerability.
A statement by AMD follows.

CrossTalk is Another Intel-exclusive Security Vulnerability

Intel has had quite a lot of work trying to patch all vulnerabilities discovered in the past two years. Starting from Spectre and Meltdown which exploited speculative execution of the processor to execute malicious code. The entire process of speculative execution relies on the microarchitectural technique for adding more performance called speculative branch prediction. This technique predicts branch paths and prepared them for execution, so the processor spends less time figuring out where and how will instructions flow through the CPU. So far, lots of these bugs have been ironed out with software, but a lot of older CPUs are vulnerable.

However, an attacker has always thought about doing malicious code execution on a CPU core shared with the victim, and never on multiple cores. This is where the new CrossTalk vulnerability comes in. Dubbed Special Register Buffer Data Sampling (SRBDS) by Intel, it is labeled as CVE-2020-0543 in the vulnerability identifier system. The CrossTalk is bypassing all intra-core patches against Spectre and Meltdown so it can attack any CPU core on the processor. It enables attacker-controlled code execution on one CPU core to leak sensitive data from victim software executing on a different core. This technique is quite dangerous for users of shared systems like in the cloud. Often, one instance is shared across multiple customers and until now they were safe from each other. The vulnerability uses Intel's SGX security enclave against the processor so it can be executed. To read about CrossTalk in detail, please visit the page here.
Intel Meltdown and Spectre

'Spectra' Cyber Attack Breaks Coexistence Between Wi-Fi and Bluetooth

Nowadays wireless technologies are increasingly sharing spectrum. This is the case for Wi-Fi and Bluetooth, but also some LTE bands and harmonics. Operating on the same frequency means that these different technologies need to coordinate wireless spectrum access to avoid collisions. Especially for nearby sources, as it is the case for multiple chips within one smartphone, so-called coexistence is the key to high-performance spectrum sharing.

Coexistence between wireless chips can be implemented in various ways. While there are open specifications, most manufacturers opt to develop proprietary coexistence mechanisms to further improve performance. Open interfaces are not needed on combo chips that implement multiple wireless technologies, as the manufacturer has full control.

Spectra, a new vulnerability class, relies on the fact that transmissions happen in the same spectrum and wireless chips need to arbitrate the channel access. While coexistence should only increase performance, it also poses a powerful side channel.
Return to Keyword Browsing
Jun 30th, 2025 20:09 CDT change timezone

New Forum Posts

Popular Reviews

TPU on YouTube

Controversial News Posts