MSI GeForce RTX 4070 Gaming X Trio leads the company's custom-design RTX 4070 graphics card series from the front. The Gaming X line of graphics card propelled MSI to the top of the custom graphics market. The company succeeded in fusing the best performance, noise, and product aesthetics into a well-rounded product The RTX 4070 Gaming X Trio offers factory-overclocked speeds of an impressive 2610 MHz, compared to 2475 MHz reference. It serves up a well-executed RGB LED setup, the company's latest Tri Frozr triple-slot, triple-fan cooling solution, with its latest TorX fans that come with webbed, axial-flow impellers. Supporting its factory-overclock is a powerful VRM solution that uses the modern 16-pin 12VHPWR power connector (this is the only custom-design we've tested that uses it). MSI is pricing the Gaming X Trio at $650, a nifty premium over the NVIDIA MSRP, which is the only reason it missed out on review coverage on April 12.
The GeForce Ada graphics architecture that the RTX 4070 is based on, debuts the third generation of RTX, NVIDIA's ground-breaking technology that steps-up realism in games by combining real time ray traced elements with classic raster 3D graphics. Even this bit of ray tracing requires enormous compute power, and so the company created dedicated hardware inside the GPU that takes care of these workloads. Ada debuts the 3rd generation RT core with a generational uplift in ray tracing intersection performance; and 4th generation Tensor cores, which accelerate AI deep-learning neural nets, by tapping into even newer capabilities. The Ada CUDA core, plus higher GPU clock-speeds, and a completely redesigned memory sub-system with larger on-die caches, make up the new architecture.
The RTX 4070 is based on the same "AD104" silicon that the RTX 4070 Ti maxes out, but is heavily cut down. It features 5,888 CUDA cores, 46 RT cores, 184 Tensor cores, 64 ROPs, and 184 TMUs. The memory setup is unchanged from the RTX 4070 Ti—you get 12 GB of 21 Gbps GDDR6X memory across a 192-bit wide memory bus, yielding 504 GB/s of memory bandwidth, which is still higher than the 448 GB/s the previous-generation RTX 3070 manages over its 256-bit memory bus. The core-configuration, particularly the shader count, is identical to that of the RTX 3070, but over a brand new architecture.
GeForce RTX 4070 Market Segment Analysis
Price
Cores
ROPs
Core Clock
Boost Clock
Memory Clock
GPU
Transistors
Memory
Arc A770
$290
4096
128
2100 MHz
N/A
2187 MHz
ACM-G10
21700M
16 GB, GDDR6, 256-bit
RTX 2080
$310
2944
64
1515 MHz
1710 MHz
1750 MHz
TU104
13600M
8 GB, GDDR6, 256-bit
RTX 3060 Ti
$320
4864
80
1410 MHz
1665 MHz
1750 MHz
GA104
17400M
8 GB, GDDR6, 256-bit
RX 6700 XT
$320
2560
64
2424 MHz
2581 MHz
2000 MHz
Navi 22
17200M
12 GB, GDDR6, 192-bit
RTX 2080 Ti
$420
4352
88
1350 MHz
1545 MHz
1750 MHz
TU102
18600M
11 GB, GDDR6, 352-bit
RTX 3070
$400
5888
96
1500 MHz
1725 MHz
1750 MHz
GA104
17400M
8 GB, GDDR6, 256-bit
RTX 3070 Ti
$500
6144
96
1575 MHz
1770 MHz
1188 MHz
GA104
17400M
8 GB, GDDR6X, 256-bit
RX 6800
$450
3840
96
1815 MHz
2105 MHz
2000 MHz
Navi 21
26800M
16 GB, GDDR6, 256-bit
RX 6800 XT
$510
4608
128
2015 MHz
2250 MHz
2000 MHz
Navi 21
26800M
16 GB, GDDR6, 256-bit
RTX 3080
$550
8704
96
1440 MHz
1710 MHz
1188 MHz
GA102
28000M
10 GB, GDDR6X, 320-bit
RTX 4070
$600
5888
64
1920 MHz
2475 MHz
1313 MHz
AD104
35800M
12 GB, GDDR6X, 192-bit
MSI RTX 4070 Gaming X Trio
$650
5888
64
1920 MHz
2610 MHz
1313 MHz
AD104
35800M
12 GB, GDDR6X, 192-bit
RTX 3080 Ti
$750
10240
112
1365 MHz
1665 MHz
1188 MHz
GA102
28000M
12 GB, GDDR6X, 384-bit
RX 6900 XT
$620
5120
128
2015 MHz
2250 MHz
2000 MHz
Navi 21
26800M
16 GB, GDDR6, 256-bit
RX 6950 XT
$680
5120
128
2100 MHz
2310 MHz
2250 MHz
Navi 21
26800M
16 GB, GDDR6, 256-bit
RTX 3090
$800
10496
112
1395 MHz
1695 MHz
1219 MHz
GA102
28000M
24 GB, GDDR6X, 384-bit
RTX 4070 Ti
$800
7680
80
2310 MHz
2610 MHz
1313 MHz
AD104
35800M
12 GB, GDDR6X, 192-bit
RX 7900 XT
$800
5376
192
2000 MHz
2400 MHz
2500 MHz
Navi 31
57700M
20 GB, GDDR6, 320-bit
RTX 3090 Ti
$1000
10752
112
1560 MHz
1950 MHz
1313 MHz
GA102
28000M
24 GB, GDDR6X, 384-bit
RTX 4080
$1150
9728
112
2205 MHz
2505 MHz
1400 MHz
AD103
45900M
16 GB, GDDR6X, 256-bit
RX 7900 XTX
$960
6144
192
2300 MHz
2500 MHz
2500 MHz
Navi 31
57700M
24 GB, GDDR6, 384-bit
RTX 4090
$1600
16384
176
2235 MHz
2520 MHz
1313 MHz
AD102
76300M
24 GB, GDDR6X, 384-bit
Architecture
The Ada graphics architecture heralds the third generation of the NVIDIA RTX technology, an effort toward increasing the realism of game visuals by leveraging real-time ray tracing, without the enormous amount of compute power required to draw purely ray-traced 3D graphics. This is done by blending conventional raster graphics with ray traced elements such as reflections, lighting, and global illumination, to name a few. The 3rd generation of RTX introduces the new higher IPC "Ada" CUDA core, 3rd generation RT core, 4th generation Tensor core, and the new Optical Flow Processor, a component that plays a key role in generating new frames without involving the GPU's main graphics rendering pipeline.
The GeForce Ada graphics architecture driving the RTX 4070 leverages the TSMC 5 nm EUV foundry process to increase transistor counts. At the heart of this GPU is the new AD104 silicon, which has a fairly high transistor count of 35.8 billion, which is more than double that of the previous-generation GA104. The GPU features a PCI-Express 4.0 x16 host interface, and a 192-bit wide GDDR6X memory bus, which on the RTX 4070 wires out to 12 GB of memory. The Optical Flow Accelerator (OFA) is an independent top-level component. The chip features one NVENC and one NVDEC units in the GeForce RTX 4070.
The essential component hierarchy is similar to past generations of NVIDIA GPUs. The AD104 silicon features 5 Graphics Processing Clusters (GPCs), each of these has all the SIMD and graphics rendering machinery, and is a small GPU in its own right. Each GPC shares a raster engine (geometry processing components) and two ROP partitions (each with eight ROP units). The GPC of the AD104 contains six Texture Processing Clusters (TPCs), the main number-crunching machinery. Each of these has two Streaming Multiprocessors (SM), and a Polymorph unit. Each SM contains 128 CUDA cores across four partitions. Half of these CUDA cores are pure-FP32; while the other half is capable of FP32 or INT32. The SM retains concurrent FP32+INT32 math processing capability. The SM also contains a 3rd generation RT core, four 4th generation Tensor cores, some cache memory, and four TMUs. There are 12 SM per GPC, so 1,536 CUDA cores, 48 Tensor cores, and 12 RT cores; per GPC. There are five such GPCs, which add up to 7,680 CUDA cores, 240 TMUs, 240 Tensor Cores, and 60 RT cores. Each GPC contributes 16 ROPs, so there are 80 ROPs on the silicon. The RTX 4070 is carved out of the AD104 by disabling an entire GPC worth 6 TPCs, and an additional TPC from one of the remaining GPCs. This yields 5,888 CUDA cores, 184 Tensor cores, 46 RT cores, and 184 TMUs. The ROP count has been reduced from 80 to 64. The on-die L2 cache sees a slight reduction, too, which is now down to 36 MB from the 48 MB present.
The 3rd generation RT core accelerates the most math-intensive aspects of real-time ray tracing, including BVH traversal. Displaced micro-mesh engine is a revolutionary feature introduced with the new 3rd generation RT core. Just as mesh shaders and tessellation have had a profound impact on improving performance with complex raster geometry, allowing game developers to significantly increase geometric complexity; DMM is a method to reduce the complexity of the bounding-volume hierarchy (BVH) data-structure, which is used to determine where a ray hits geometry. Previously, the BVH had to capture even the smallest details to properly determine the intersection point. Ada's ray tracing architecture also receives a major performance uplift from Shader Execution Reordering (SER), a software-defined feature that requires awareness from game-engines, to help the GPU reorganize and optimize worker threads associated with ray tracing.
The BVH now needn't have data for every single triangle on an object, but can represent objects with complex geometry as a coarse mesh of base triangles, which greatly simplifies the BVH data structure. A simpler BVH means less memory consumed and helps to greatly reduce ray tracing CPU load, because the CPU only has to generate a smaller structure. With older "Ampere" and "Turing" RT cores, each triangle on an object had to be sampled at high overhead, so the RT core could precisely calculate ray intersection for each triangle. With Ada, the simpler BVH, plus the displacement maps can be sent to the RT core, which is now able to figure out the exact hit point on its own. NVIDIA has seen 11:1 to 28:1 compression in total triangle counts. This reduces BVH compile times by 7.6x to over 15x, in comparison to the older RT core; and reducing its storage footprint by anywhere between 6.5 to 20 times. DMM could reduce disk- and memory bandwidth utilization, utilization of the PCIe bus, as well as reduce CPU utilization. NVIDIA worked with Simplygon and Adobe to add DMM support for their tool chains.
Opacity Micro Meshes (OMM) is a new feature introduced with Ada to improve rasterization performance, particularly with objects that have alpha (transparency data). Most low-priority objects in a 3D scene, such as leaves on a tree, are essentially rectangles with textures on the leaves where the transparency (alpha) creates the shape of the leaf. RT cores have a hard time intersecting rays with such objects, because they're not really in the shape that they appear (they're really just rectangles with textures that give you the illusion of shape). Previous-generation RT cores had to have multiple interactions with the rendering stage to figure out the shape of a transparent object, because they couldn't test for alpha by themselves.
This has been solved by using OMMs. Just as DMMs simplify geometry by creating meshes of micro-triangles; OMMs create meshes of rectangular textures that align with parts of the texture that aren't alpha, so the RT core has a better understanding of the geometry of the object, and can correctly calculate ray intersections. This has a significant performance impact on shading performance in non-RT applications, too. Practical applications of OMMs aren't just low-priority objects such as vegetation, but also smoke-sprites and localized fog. Traditionally there was a lot of overdraw for such effects, because they layered multiple textures on top of each other, that all had to be fully processed by the shaders. Now only the non-opaque pixels get executed—OMMs provide a 30 percent speedup with graphics buffer fill-rates, and a 10 percent impact on frame-rates.
DLSS 3 introduces a revolutionary new feature that promises a doubling in frame-rate at comparable quality, it's called AI frame-generation. While it has all the features of DLSS 2 and its AI super-resolution (scaling up a lower-resolution frame to native resolution with minimal quality loss); DLSS 3 can generate entire frames simply using AI, without involving the graphics rendering pipeline. Later in the article, we will show you DLSS 3 in action.
Every alternating frame with DLSS 3 is hence AI-generated, without being a replica of the previous rendered frame. This is possible only on the Ada graphics architecture, because of a hardware component called the optical flow accelerator (OFA), which assists in predicting what the next frame could look like, by creating what NVIDIA calls an optical flow-field. OFA ensures that the DLSS 3 algorithm isn't confused by static objects in a rapidly-changing 3D scene (such as a race sim). The process heavily relies on the performance uplift introduced by the FP8 math format of the 4th generation Tensor core. A third key ingredient of DLSS 3 is Reflex. By reducing the rendering queue to zero, Reflex plays a vital role in ensuring that frame-times with DLSS 3 are at an acceptable level, and a render-queue doesn't confuse the upscaler. A combination of OFA and the 4th Gen Tensor core is why the Ada architecture is required to use DLSS 3, and why it won't work on older architectures.
Packaging
The Card
MSI's RTX 4070 is instantly recognizable as a card from the Gaming X series, thanks to its unique cooler shroud style. On the other side you'll find a metal backplate that has a cutout for air to flow through.
MSI has integrated an RGB lighting element in the front of the card around the center fan, and the MSI logo on the top edge is illuminated, too.
Dimensions of the card are 34 x 14 cm, and it weighs 1217 g.
Installation requires three slots in your system.
Display connectivity includes three standard DisplayPort 1.4a ports and one HDMI 2.1a (same as Ampere).
NVIDIA introduced the concept of dual NVDEC and NVENC Codecs with the Ada Lovelace architecture. This means there are two independent sets of hardware-accelerators; so you can encode and decode two streams of video in parallel or one stream at double the FPS rate. The new 8th Gen NVENC now accelerates AV1 encoding, besides HEVC. You also get an "optical flow accelerator" unit that is able to calculate intermediate frames for videos, to smooth playback. The same hardware unit is used for frame generation in DLSS 3.
The card uses the new 12+4 pin ATX 12VHPWR connector, which is rated for up to 600 W of power draw. An adapter cable from 2x PCIe 8-pin is included (which is rated for up to 300 W). The card's default power limit is 215 W, up from the 200 W NVIDIA default. Of course the 3x and 4x 8-pin to 16-pin adapter cables from other Ampere cards will work with the RTX 4070, but the card won't need or use that much power.
Teardown
MSI's heatsink uses six heatpipes to keep the card cool. The main cooler also provides cooling for the memory chips and VRM circuitry.
The metal backplate protects the card against damage during installation and handling.
High-resolution PCB Pictures
These pictures are for the convenience of volt modders and people who would like to see all the finer details on the PCB. Feel free to link back to us and use these in your articles, videos or forum posts.
High-resolution versions are also available (front, back).
Circuit Board (PCB) Analysis
GPU voltage is a nine-phase design, managed by a uPI uP9512R controller.
Alpha & Omega AOZ5311NQI BLN3 DrMOS components are used for GPU voltage; they are rated for 55 A of current each.
Memory voltage is a two-phase design, managed by a uPI uP9529Q controller.
For memory, Alpha & Omega AOZ5311NQI BLN30 are used, too, with a 55 A rating.
The GDDR6X memory chips are made by Micron and carry the model number D8BZC, which decodes to MT61K512M32KPA-21:U. They are specified to run at 1313 MHz (21 Gbps GDDR6 effective).
NVIDIA's AD104 graphics processor is the company's third Ada Lovelace GPU. It is built using a 5 nanometer process at TSMC Taiwan, with a transistor count of 35.8 billion and a die size of 295 mm².