Friday, July 15th 2011
New Sandia CPU Cooler Design Offers Fundamental Breakthrough in Heat Transfer
Sandia National Laboratories has developed a new technology with the potential to dramatically alter the air-cooling landscape in computing and microelectronics, and lab officials are now seeking licensees in the electronics chip cooling field to license and commercialize the device.
The "Sandia Cooler," also known as the "Air Bearing Heat Exchanger," is a novel, proprietary air-cooling invention developed by Sandia researcher Jeff Koplow, who was recently selected by the National Academy of Engineering (NAE) to take part in the NAE's 17th annual U.S. Frontiers of Engineering symposium.Koplow said the Sandia Cooler technology, which is patent-pending, will significantly reduce the energy needed to cool the processor chips in data centers and large-scale computing environments. The yearly electricity bill paid by the information technology sector in the U.S. is currently on the order of seven billion dollars and continues to grow.
Dramatic improvements in cooling, other benefits
In a conventional CPU cooler, the heat transfer bottleneck is the boundary layer of "dead air" that clings to the cooling fins. With the Sandia Cooler, heat is efficiently transferred across a narrow air gap from a stationary base to a rotating structure. The normally stagnant boundary layer of air enveloping the cooling fins is subjected to a powerful centrifugal pumping effect, causing the boundary layer thickness to be reduced to ten times thinner than normal. This reduction enables a dramatic improvement in cooling performance within a much smaller package.
Additionally, the high speed rotation of the heat exchanger fins minimizes the problem of heat exchanger fouling. The way the redesigned cooling fins slice through the air greatly improves aerodynamic efficiency, which translates to extremely quiet operation. The Sandia Cooler's benefits have been verified by lab researchers on a proof-of-concept prototype approximately sized to cool computer CPUs. The technology, Koplow said, also shows great potential for personal computer applications.
Broader energy sector applications
The Sandia Cooler also offers benefits in other applications where thermal management and energy efficiency are important, particularly heating, ventilation and air-conditioning (HVAC). Koplow said that if Air Bearing Heat Exchanger technology proves amenable to size scaling, it has the potential to decrease overall electrical power consumption in the U.S. by more than seven percent.
Companies interested in licensing the Sandia Cooler are invited to review and respond to the solicitation through July 15. The solicitation can be found here. Although it is first focused on licensing opportunities in the field of electronics chip cooling, Sandia will soon establish a separate process for exploring partnering and/or licensing opportunities in other fields.
A technical white paper on the Sandia Cooler technology can be found here.
Sandia's work on the cooler technology was funded initially through internal investments. Follow-on funding is also being provided by the Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE).
The "Sandia Cooler," also known as the "Air Bearing Heat Exchanger," is a novel, proprietary air-cooling invention developed by Sandia researcher Jeff Koplow, who was recently selected by the National Academy of Engineering (NAE) to take part in the NAE's 17th annual U.S. Frontiers of Engineering symposium.Koplow said the Sandia Cooler technology, which is patent-pending, will significantly reduce the energy needed to cool the processor chips in data centers and large-scale computing environments. The yearly electricity bill paid by the information technology sector in the U.S. is currently on the order of seven billion dollars and continues to grow.
Dramatic improvements in cooling, other benefits
In a conventional CPU cooler, the heat transfer bottleneck is the boundary layer of "dead air" that clings to the cooling fins. With the Sandia Cooler, heat is efficiently transferred across a narrow air gap from a stationary base to a rotating structure. The normally stagnant boundary layer of air enveloping the cooling fins is subjected to a powerful centrifugal pumping effect, causing the boundary layer thickness to be reduced to ten times thinner than normal. This reduction enables a dramatic improvement in cooling performance within a much smaller package.
Additionally, the high speed rotation of the heat exchanger fins minimizes the problem of heat exchanger fouling. The way the redesigned cooling fins slice through the air greatly improves aerodynamic efficiency, which translates to extremely quiet operation. The Sandia Cooler's benefits have been verified by lab researchers on a proof-of-concept prototype approximately sized to cool computer CPUs. The technology, Koplow said, also shows great potential for personal computer applications.
Broader energy sector applications
The Sandia Cooler also offers benefits in other applications where thermal management and energy efficiency are important, particularly heating, ventilation and air-conditioning (HVAC). Koplow said that if Air Bearing Heat Exchanger technology proves amenable to size scaling, it has the potential to decrease overall electrical power consumption in the U.S. by more than seven percent.
Companies interested in licensing the Sandia Cooler are invited to review and respond to the solicitation through July 15. The solicitation can be found here. Although it is first focused on licensing opportunities in the field of electronics chip cooling, Sandia will soon establish a separate process for exploring partnering and/or licensing opportunities in other fields.
A technical white paper on the Sandia Cooler technology can be found here.
Sandia's work on the cooler technology was funded initially through internal investments. Follow-on funding is also being provided by the Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE).
42 Comments on New Sandia CPU Cooler Design Offers Fundamental Breakthrough in Heat Transfer
micropage- this has nothing to do with conventional cooler where the fins are not moving
I'd be scared of reaching in while the PC was on, however.
It will turn your hand into mulch
I'd love to see a "review" of it from a testor.
Who does the HSF reviews for TPU?
In the 2nd pic, is he hiding his fingers so we don't see all the band-aids due to cuts or is it that he just doesn't have any finger tips left?
Hopefully, we'll see this on the market sooner than later!
will be Rev.2 of the Sandia Coolers i guess!:laugh:
All moving parts have a MTBF so if the motor fails will it still be efficient enough to keep going or will it cause a catastrophic spike in the cooling efficiency?
A better question would be: when will the motor fail? But we won't see the answer until this is beyond prototype stage unfortunately...
Your typical aftermarket heatsink works quite well without a fan as well. Albeit you wouldn't want to run your CPU at those temps for long.
By the looks of it if that became stationary the fins are too thick to provide enough heat dissipation. The more surface area the better it would perform.
look at those stupid flop liquid metal coolers that were all the hype a few years ago.
look at the carbon nano fiber ocz hydro(hydra sp? bleh!) that came before the failed liquid metal ones.
how bout those micro corona fans that were going to revolutionise how chips were cooled? I read that article on here ages ago and yet you hear nothing about stuff like that.
my point is, you see all this new tech, more then half of it doesn't become a mainstream reality, and the half that does usually flops significantly compared to when you read about it when its in a proto/conceptual phase of r&d. :slap:
so basically they try keep rotating cool air with impeller / fin to entire plate surface rather than just passed it through like conventional / stock hsf.
but i think it kinda have downward, because hot air that blows through the fin will still spreading inside the case, rather than just exhausted it directly through rear or top fan like tower hsf does..
0.001" is a heck of a tolerance to maintain, and given the fact that the air bearing is what functions as a heat transfer media you're dealing with a surface that needs uniquely precise (for consumer grade motors anyway) manufacturing tolerances.
Is it interesting, yes. Is it practical, that remains to be seen. Are we going to see it soon, not likely. White papers are interesting, but of little use until someone licenses the technology for production.