Tuesday, October 16th 2007
Electromagnetic Wormholes May Make 3D TVs Possible
A professor of mathematics at the University of Rochester named Allan Greenleaf has solved a mathematical problem which could bring electromagnetic wormholes (EMW) into existence. These EMWs would create a full invisibility cloak in a tube which surrounds whatever they were employed to hide. Such devices could eventually be employed to make true 3D TV possible, and without special glasses. Researchers themselves admit this is a long way off from practical application. However, scientists are now theorizing about such things and believe that they are ultimately possible.In their simplest forms, EMWs are basically tubes. They create a specific type of EM field around an object, one which refracts electromagnetic waves of all frequencies, according to the researchers. The EM radiation continues on from its source as it would've without the tube being there. It would be like an invisible paper towel roll. When you hold it up, the light from behind is refracted around, no matter which way it was turned, producing a true invisibility cloak. These tubes would then be placed in such a way as to surround an object, thereby making the object inside appear invisible. The researchers indicated that the field generated would also cause an odd side effect. If, for example, you were to look in one end of the tube and out the other side, the generated field would produce a fish-eye appearance, or something like an Escher drawing, making the tube's through-image appearance distorted. The scientists were able to take their theory and apply it to practical applications, at least in a mental exercise. For example, micro-surgery in the presence of an MRI system would be possible. Since any tools a surgeon might need to use would greatly distort the MRI field and subsequent display the surgeon would use, the desire to electromagnetically cloak all parts of the tool except for the very tip would be prevalent. This would result in a significantly greater ability for surgeons to see what they'd be doing with greater image quality and accuracy, and in real-time through the MRI. Fewer distortions means potentially life-saving solutions as they guide tools more expertly through computer assistance. Potentially one of the more exciting future aspects of the design would be the 3D TV. Consider fiber optics lights and the bundle of cords which shine the light out from some central source. When the cords are held together they produce a lot of light. Individually however, they are tip lights only which, while sometimes pretty, don't convey a lot of light. Well, for the 3D TV something similar would be used. Imagine an array of toothbrush-like bristles extending up from a projection source. The bristles would be of different lengths, however, fully occupying all points in a cube, each comprising a single dot at a given X/Y/Z coordinate. Rather than just having a pixelated surface image as with traditional TV, layer after layer of pixelated images would be created, each corresponding to a specific layer or slice of the 3D image being projected. Now, using traditional fiber optics cables to achieve this effect is theoretically possible today. However, the cables themselves would quickly get in the way. Anything below the second or third layer would become very difficult to see. The interference from the fibers themselves would distort the light, making it dim and probably completely obstructed below the first few layers. The mathematicians involved in carrying out this research have suggested that by cloaking all of the fiber optic stems from source to tip, all of the emitted light from inside of the cube would be visible, thereby allowing for 3D TV. Rather than the stems obstructing the light from all the 3D pixels, they would simply carry the light around the EMWs straight to the eye. One of the researchers described it as "a thousand pixels suspended in mid air." They admit it's a long ways off, but mathematically it is possible, and it is something they're thinking of.
Source:
TG Daily
25 Comments on Electromagnetic Wormholes May Make 3D TVs Possible
FINALY SHIT U ONLY SAW IN GAMES (& I GUESS SORTA IN SOME MOVIES)
IS FINALY BECOMING REAL.....
Since it refracts electromagnetic waves of all frequencies wouldn't that make it invisible to computers & shit?
or would sound & stuff still bounce back off it.....?
its quit scary when u think about it.... is anyone gonna tell me that the government wont 1day implement this in a way thats going to compromise everyones privacy & stuff (for example camera's that are almost invisible apart from the lens..... coz we'll never know.....)
still this is the most awesome thing i have ever read.... now you dont have to create floating stuff that runs by air or anything... coz u can just hide it all instead:D
even 2d monitors that float & just show a screen & a 5mm floating dot above it for your webcam!!!
i'll shut up now... suddenly i have a mass of thoughts that this technology could be implied on!!!
really cool idea tho'
They had 3d TVs at CES last year that didn't take any glasses, but I think you couldn't move around the room and still see it.
although the possibilities may be to large for just the military...........
we will see....... or not, as i just said..... ummmm...... yer..........
& was that 3d tech at CES by any chance a "heliodisplay"?
For instance ...
1) In order to generate an EM Tube to bend the frequencies around it you would need an EM Tube generator. How much power would the generator need to create a tube that would bend "all" frequencies, or even just visible light frequencies?
2) Can an EM Tube generator exist inside the tube along with what you are hiding? or would that distort the tube?
3) The magnetic field of an MRI scanner is about 25x the earth's magnetic field (or they were when I built them). What effect would the MRI's field have on a much smaller EM tube?
If for some reason the "cloaking" field collapsed, what then? I've seen what an MRI scanner does with anything even marginally subject to magnetic fields, and it ain't pretty.
4) If the military hid something would you still see it if you look through the tube? Yes, according to the article.
5) 3DTV, it is impossible to run fiber optic lines to every x,y,z point in a cube, as the strands of fiber take up a portion of the cubic volume that "tips" would need to be located at.
Yah, I know ... I'm a buzzkill :D
Here is the paper, submitted by Greenleaf to the journal for publication, if you're interested.
The 3D Display is described differently in the paper. That is much clearer than the summary, as is the MRI applications (even though they do not elaborate on them in the paper either).
My favorite part of the paper :D ... I guess it just doesn't get much simpler than that !!
.........ummmm..........properly i mean............
ROFL
ezinearticles.com/?Japanese-Developing-Sex-Robots&id=55797
if you can't tell, it's a much simpler version of what we need to make the world a better place.
Since the release of the worm hole invisibility cloak 2 days ago, yet another man has been found hiding behind one in the girls shower room.....
HAAHAAAHAAAA....
since its electromagnetic waves wouldn't that stop someone from fully cloaking a military vehicle for instance.
because the vehicle would have no bearings & no line of sight.............
(or was it the Romunlans? I forget who had cloaking. Sorry.)