NVIDIA RTX 5090 "Blackwell" Could Feature Two 16-pin Power Connectors
NVIDIA CEO Jensen Huang never misses an opportunity to remind us that Moore's Law is cooked, and that future generations of logic hardware will only get larger and hotter, or hungrier for power. NVIDIA's next generation "Blackwell" graphics architecture promises to bring certain architecture-level performance/Watt improvements, coupled with the node-level performance/Watt improvements from the switch to the TSMC 4NP (4 nm-class) node. Even so, the GeForce RTX 5090, or the part that succeeds the current RTX 4090, will be a power hungry GPU, with rumors suggesting the need for two 16-pin power inputs.
TweakTown reports that the RTX 5090 could come with two 16-pin power connectors, which should give the card the theoretical ability to pull 1200 W (continuous). This doesn't mean that the GPU's total graphics power (TGP) is 1200 W, but a number close to or greater than 600 W, which calls for two of these connectors. Even if the TGP is exactly 600 W, NVIDIA would want to deploy two inputs, to spread the load among two connectors, and improve physical resilience of the connector. It's likely that both connectors will have 600 W input capability, so end-users don't mix up connectors should one of them be 600 W and the other keyed to 150 W or 300 W.
TweakTown reports that the RTX 5090 could come with two 16-pin power connectors, which should give the card the theoretical ability to pull 1200 W (continuous). This doesn't mean that the GPU's total graphics power (TGP) is 1200 W, but a number close to or greater than 600 W, which calls for two of these connectors. Even if the TGP is exactly 600 W, NVIDIA would want to deploy two inputs, to spread the load among two connectors, and improve physical resilience of the connector. It's likely that both connectors will have 600 W input capability, so end-users don't mix up connectors should one of them be 600 W and the other keyed to 150 W or 300 W.