News Posts matching #Chiplet

Return to Keyword Browsing

LG and Tenstorrent Expand Partnership to Enhance AI Chip Capabilities

LG Electronics (LG) and Tenstorrent are pleased to announce an expanded collaboration, building on their initial chiplet project to develop System-on-Chips (SoCs) and systems for the global market. Through this partnership, LG aims to enhance its design and development capabilities for AI chips tailored to its products and services, aligning with its vision of "Affectionate Intelligence." LG is dedicated to advancing AI-driven innovation, with a focus on enhancing its AI-powered home appliances and smart home solutions, as well as expanding its capabilities in future mobility and commercial applications.

Recognizing the critical role of high-performance AI semiconductors in implementing AI technology, LG plans to strengthen its in-house development capabilities while collaborating with leading global companies, including Tenstorrent, to boost its AI competitiveness.

Social Media Imagines AMD "Navi 48" RDNA 4 to be a Dual-Chiplet GPU

A Chinese tech forum ChipHell user who goes by zcjzcj11111 sprung up a fascinating take on what the next-generation AMD "Navi 48" GPU could be, and put their imagination on a render. Apparently, the "Navi 48," which powers AMD's series-topping performance-segment graphics card, is a dual chiplet-based design, similar to the company's latest Instinct MI300 series AI GPUs. This won't be a disaggregated GPU such as the "Navi 31" and "Navi 32," but rather a scale-out multi-chip module of two GPU dies that can otherwise run on their own in single-die packages. You want to call this a multi-GPU-on-a-stick? Go ahead, but there are a couple of changes.

On AMD's Instinct AI GPUs, the chiplets have full cache coherence with each other, and can address memory controlled by each other. This cache coherence makes the chiplets work like one giant chip. In a multi-GPU-on-a-stick, there would be no cache coherence, the two dies would be mapped by the host machine as two separate devices, and then you'd be at the mercy of implicit or explicit multi-GPU technologies for performance to scale. This isn't what's happening on AI GPUs—despite multiple chiplets, the GPU is seen by the host as a single PCI device with all its cache and memory visible to software as a contiguously addressable block.

Eliyan Delivers Highest Performing Chiplet Interconnect PHY at 64Gbps in 3nm Process

Eliyan Corporation, credited for the invention of the semiconductor industry's highest-performance and most efficient chiplet interconnect, today revealed the successful delivery of first silicon for its NuLink -2.0 PHY, manufactured in a 3 nm process. The device achieves 64 Gbps/bump, the industry's highest performance for a die-to-die PHY solution for multi-die architectures. While compatible with UCIe standard, the milestone further confirms Eliyan's ability to extend die-to-die connectivity by 2x higher bandwidth, on standard as well as advanced packaging, at unprecedented power, area, and latency.

The NuLink-2.0 is a multi-mode PHY solution that also supports UMI (Universal Memory Interconnect), a novel chiplet interconnect technology that improves Die-to-Memory bandwidth efficiency by more than 2x. UMI leverages a dynamic bidirectional PHY whose specifications are currently being finalized with the Open Compute Project (OCP) as BoW 2.1.

OPENEDGES Unveils UCIe Chiplet Controller IP

OPENEDGES Technology, Inc., the leading provider of memory subsystem intellectual property (IP), today announced the launch of the Universal Chiplet Interconnect Express (UCIe) Controller IP, named OUC. UCIe is an open industry standard for a die-to-die interconnect, and co-developed by industry giants including AMD, Arm, ASE Group, Google Cloud, Intel, Meta, Microsoft, Qualcomm, and Samsung. UCIe is becoming a new trend in the semiconductor industry due to its advantages, such as increased semiconductor circuit integration, reduced production costs, and higher yields. OPENEDGES is contributing to UCIe consortium as a contributing member.

The OUC, deriving its name from OPENEDGES UCIe Controller, is tailored for highly customizable, package-level integration, facilitating die-to-die interconnect and protocol connections. It creates an interoperable, multi-vendor ecosystem set to revolutionize chip integration methodologies across the industry.

Alphawave Semi Launches Industry's First 3nm UCIe IP with TSMC CoWoS Packaging

Alphawave Semi, a global leader in high-speed connectivity and compute silicon for the world's technology infrastructure, has launched the industry's first 3 nm successful silicon bring-up of Universal Chiplet Interconnect Express (UCIe) Die-to-Die (D2D) IP with TSMC's Chip-on-Wafer-on-Substrate (CoWoS) advanced packaging technology.

The complete PHY and Controller subsystem was developed in collaboration with TSMC and targets applications such as hyperscaler, high-performance computing (HPC) and artificial intelligence (AI).

Samsung Electro-Mechanics Collaborates with AMD to Supply High-Performance Substrates for Hyperscale Data Center Computing

Samsung Electro-Mechanics (SEMCO) today announced a collaboration with AMD to supply high-performance substrates for hyperscale data center compute applications. These substrates are made in SEMCO's key the technology hub in Busan and the newly built state of the art factory in Vietnam. Market research firm Prismark predicts that the semiconductor substrate market will grow at an average annual rate of about 7%, increasing from 15.2 trillion KRW in 2024 to 20 trillion KRW in 2028. SEMCO's substantial investment of 1.9 trillion KRW in the FCBGA factory underscores its commitment to advancing substrate technology and manufacturing capabilities to meet the highest industry standards and the future technology needs.

SEMCO's collaboration with AMD focuses on meeting the unique challenges of integrating multiple semiconductor chips (Chiplets) on a single large substrate. These high-performance substrates, essential for CPU/GPU applications, offer significantly larger surface areas and higher layer counts, providing the dense interconnections required for today's advanced data centers. Compared to standard computer substrates, data center substrates are ten times larger and feature three times more layers, ensuring efficient power delivery and lossless signal integrity between chips. Addressing these challenges, SEMCO's innovative manufacturing processes mitigate issues like warpage to ensure high yields during chip mounting.

AMD Zen 5 Chiplet Built on 4 nm, "Granite Ridge" First Model Numbers Leaked

An alleged company slide by motherboard maker GIGABYTE leaked a few interesting tidbits about the upcoming AMD Ryzen 9000 "Granite Ridge" Socket AM5 desktop processor powered by the "Zen 5" microarchitecture. To begin with, we're getting our first confirmation that the "Zen 5" common CCD used on "Granite Ridge" desktop processors and future EPYC "Turin" server processors, is built on the 4 nm EUV foundry node by TSMC, an upgrade from the 5 nm EUV node that the "Zen 4" CCD is built on. This could be the same version of the TSMC N4 node that AMD had been using for its "Phoenix" and "Hawk Point" mobile processors.

AMD is likely carrying over the client I/O die (cIOD) from the "Raphael" processor. This is built on the TSMC 6 nm DUV node. It packs a basic iGPU based on RDNA 2 with 2 compute units; a dual-channel DDR5 memory controller, and a 28-lane PCIe Gen 5 root complex, besides some SoC connectivity. AMD is rumored to be increasing the native DDR5 speeds for "Granite Ridge," up from the DDR5-5200 JEDEC-standard native speed, and DDR5-6000 "sweetspot" speed of "Raphael," so the cIOD isn't entirely the same.

Intel Lunar Lake Chiplet Arrangement Sees Fewer Tiles—Compute and SoC

Intel Core Ultra "Lunar Lake-MX" will be the company's bulwark against Apple's M-series Pro and Max chips, designed to power the next crop of performance ultraportables. The MX codename extension denotes MoP (memory-on-package), which sees stacked LPDDR5X memory chips share the package's fiberglass substrate with the chip, to conserve PCB footprint, and give Intel greater control over the right kind of memory speed, timings, and power-management features suited to its microarchitecture. This is essentially what Apple does with its M-series SoCs powering its MacBooks and iPad Pros. Igor's Lab scored the motherlode on the way Intel has restructured the various components across its chiplets, and the various I/O wired to the package.

When compared to "Meteor Lake," the "Lunar Lake" microarchitecture sees a small amount of "re-aggregation" of the various logic-heavy components of the processor. On "Meteor Lake," the CPU cores and the iGPU sat on separate tiles—Compute tile and Graphics tile, respectively, with a large SoC tile sitting between them, and a smaller I/O tile that serves as an extension of the SoC tile. All four tiles sat on top of a Foveros base tile, which is essentially an interposer—a silicon die that facilitates high-density microscopic wiring between the various tiles that are placed on top of it. With "Lunar Lake," there are only two tiles—the Compute tile, and the SoC tile.

Raytheon works with AMD to develop next-gen Multi-Chip Package

Raytheon, an RTX business, has been awarded a $20 million contract through the Strategic and Spectrum Missions Advanced Resilient Trusted Systems (S2MARTS) consortium to develop a next-generation multi-chip package for use in ground, maritime and airborne sensors. Under the contract, Raytheon will package state-of-the-art commercial devices from industry partners like AMD to create a compact microelectronics package that will convert radio frequency energy to digital information with more bandwidth and higher data rates. The integration will result in new system capabilities designed with higher performance, lower power consumption and reduced weight.

"By teaming with commercial industry, we can incorporate cutting-edge technology into Department of Defense applications on a much faster timescale," said Colin Whelan, president of Advanced Technology at Raytheon. "Together, we will deliver the first multi-chip package that features the latest in interconnect ability - which will provide new system capabilities to our warfighters."

Ayar Labs Showcases 4 Tbps Optically-enabled Intel FPGA at Supercomputing 2023

Ayar Labs, a leader in silicon photonics for chip-to-chip connectivity, will showcase its in-package optical I/O solution integrated with Intel's industry-leading Agilex Field-Programmable Gate Array (FPGA) technology. In demonstrating 5x current industry bandwidth at 5x lower power and 20x lower latency, the optical FPGA - packaged in a common PCIe card form factor - has the potential to transform the high performance computing (HPC) landscape for data-intensive workloads such as generative artificial intelligence (AI), machine learning, and support novel new disaggregated compute and memory architectures and more.

"We're on the cusp of a new era in high performance computing as optical I/O becomes a 'must have' building block for meeting the exponentially growing, data-intensive demands of emerging technologies like generative AI," said Charles Wuischpard, CEO of Ayar Labs. "Showcasing the integration of Ayar Labs' silicon photonics and Intel's cutting-edge FPGA technology at Supercomputing is a concrete demonstration that optical I/O has the maturity and manufacturability needed to meet these critical demands."

Ventana Introduces Veyron V2 - World's Highest Performance Data Center-Class RISC-V Processor and Platform

Ventana Micro Systems Inc. today announced the second generation of its Veyron family of RISC-V processors. The new Veyron V2 is the highest performance RISC-V processor available today and is offered in the form of chiplets and IP. Ventana Founder and CEO Balaji Baktha will share the details of Veyron V2 today during his keynote speech at the RISC-V Summit North America 2023 in Santa Clara, California.

"Veyron V2 represents a leap forward in our quest to lead the industry in high-performance RISC-V CPUs that are ready for rapid customer adoption," said Balaji Baktha, Founder and CEO of Ventana. "It substantiates our commitment to customer innovation, workload acceleration, and overall optimization to achieve best in class performance per Watt per dollar. V2 enhancements unleash innovation across data center, automotive, 5G, AI, and client applications."

Socionext Announces Collaboration with Arm and TSMC on 2nm Multi-Core Leading CPU Chiplet Development

Socionext today announced a collaboration with Arm and TSMC for the development of an innovative power-optimized 32-core CPU chiplet in TSMCʼs 2 nm silicon technology, delivering scalable performance for hyperscale data center server, 5/6G infrastructure, DPU and edge-of- network markets.

The engineering samples are targeted to be available in 1H2025. This advanced CPU chiplet proof-of-concept using Arm Neoverse CSS technology is designed for single or multiple instantiations within a single package, along with IO and application-specific custom chiplets to optimize performance for a variety of end applications.

Zero ASIC Democratizing Chip Making

Zero ASIC, a semiconductor startup, came out of stealth today to announce early access to its one-of-a-kind ChipMaker platform, demonstrating a number of world firsts:
  • 3D chiplet composability enabling billions of new silicon products
  • Fully automated no-code chiplet-based chip design
  • Zero install interactive RTL-based chip emulation
  • Roadmap to 100X reduction in chip development costs
"Custom Application Specific Integrated Circuits (ASICs) offer 10-100X cost and energy advantage over commercial off the shelf (COTS) devices, but the enormous development cost makes ASICs non-viable for most applications," said Andreas Olofsson, CEO and founder of Zero ASIC. "To build the next wave of world changing silicon devices, we need to reduce the barrier to ASICs by orders of magnitude. Our mission at Zero ASIC is to make ordering an ASIC as easy as ordering catalog parts from an electronics distributor."

JEDEC and Open Compute Project Foundation Pave the Way for a New Era of Chiplet Innovation

In an extraordinary leap forward for the chiplet industry, the groundbreaking collaboration between the Open Compute Project Foundation (OCP) and JEDEC is set to usher in a new era of innovation. By merging the capabilities and open standards of OCP's Chiplet Data Extensible Markup Language (CDXML) and JEDEC's JEP30 PartModel Guidelines, this partnership, initiated in late 2022, promises to revolutionize chiplet design, manufacturing and integration. The result will be a unified structure that supports both chiplets and general electronic parts within the overarching purview of JEDEC.

In a significant development, the integration of OCP CDXML into JEP30 has reached a critical milestone, enabling chiplet builders to provide standardized chiplet part descriptions to their customers electronically. This advancement opens the door to automating System in Package (SiP) design and assembly using chiplets. The chiplet descriptions encompass crucial information for SiP builders, including thermal properties, physical and mechanical requirements, behavior specifications, power and signal integrity properties, testing in-package and security parameters.

Tenstorrent Selects Samsung Foundry to Manufacture Next-Generation AI Chiplet

Tenstorrent, a company that sells AI processors and licenses AI and RISC-V IP, announced today that it selected Samsung Foundry to bring Tenstorrent's next generation of AI chiplets to market. Tenstorrent builds powerful RISC-V CPU and AI acceleration chiplets, aiming to push the boundaries of compute in multiple industries such as data center, automotive and robotics. These chiplets are designed to deliver scalable power from milliwatts to megawatts, catering to a wide range of applications from edge devices to data centers.

To ensure the highest quality and cutting-edge manufacturing capabilities for its chiplet, Tenstorrent has selected Samsung's Foundry Design Service team, known for their expertise in silicon manufacturing. The chiplets will be manufactured using Samsung's state-of-the-art SF4X process, which boasts an impressive 4 nm architecture.

Synopsys and TSMC Streamline Multi-Die System Complexity with Unified Exploration-to-Signoff Platform and Proven UCIe IP on TSMC N3E Process

Synopsys, Inc. today announced it is extending its collaboration with TSMC to advance multi-die system designs with a comprehensive solution supporting the latest 3Dblox 2.0 standard and TSMC's 3DFabric technologies. The Synopsys Multi-Die System solution includes 3DIC Compiler, a unified exploration-to-signoff platform that delivers the highest levels of design efficiency for capacity and performance. In addition, Synopsys has achieved first-pass silicon success of its Universal Chiplet Interconnect Express (UCIe) IP on TSMC's leading N3E process for seamless die-to-die connectivity.

"TSMC has been working closely with Synopsys to deliver differentiated solutions that address designers' most complex challenges from early architecture to manufacturing," said Dan Kochpatcharin, head of the Design Infrastructure Management Division at TSMC. "Our long history of collaboration with Synopsys benefits our mutual customers with optimized solutions for performance and power efficiency to help them address multi-die system design requirements for high-performance computing, data center, and automotive applications."

ITRI Leads Global Semiconductor Collaboration for Heterogeneous Integration to Pioneer Pilot Production Solutions

The introduction of Generative AI (GAI) has significantly increased the demand for advanced semiconductor chips, drawing increased attention to the development of complex calculations for large-scale AI models and high-speed transmission interfaces. To assist the industry in grasping the key to high-end semiconductor manufacturing and integration capabilities, the Heterogeneous Integrated Chiplet System Package (Hi-CHIP) Alliance brings together leading semiconductor companies from Taiwan and around the world to provide comprehensive services, spanning from packaging design, testing and verification, to pilot production. Since its establishment in 2021, the alliance has accumulated important industry players as its members, including EVG, Kulicke and Soffa (K&S), USI, Raytek Semiconductor, Unimicron, DuPont, and Brewer Science. Looking forward, the alliance is set to actively explore its global market potential.

Dr. Shih-Chieh Chang, General Director of Electronic and Optoelectronic System Research Laboratories at ITRI and Chairman of the Hi-CHIP Alliance, indicated that advanced manufacturing processes have led to a considerable increase in IC design cycles and costs. Multi-dimensional chip design and heterogeneous integrated packaging architecture are key tools to tackle this demand in semiconductors. On top of that, the advent of GAI such as ChatGPT, which demands substantial computing power and transmission speed, requires even higher levels of integration capacity in chip manufacturing. ITRI has been committed to developing manufacturing technologies and upgrading materials and equipment to enhance heterogeneous integration technologies. Achievements include the fan-out wafer level packaging (FOWLP), 2.5 and 3D chips, embedded interposer connections (EIC), and programmable packages. With both local and foreign semiconductor manufacturer members, the Hi-CHIP Alliance is establishing an advanced packaging process production line to provide an integrated one-stop service platform.

NVIDIA Blackwell GB100 Die Could Use MCM Packaging

NVIDIA's upcoming Blackwell GPU architecture, expected to succeed the current Ada Lovelace architecture, is gearing up to make some significant changes. While we don't have any microarchitectural leaks, rumors are circulating that Blackwell will have different packaging and die structures. One of the most intriguing aspects of the upcoming Blackwell is the mention of a Multi-Chip Module (MCM) design for the GB100 data-center GPU. This advanced packaging approach allows different GPU components to exist on separate dies, providing NVIDIA with more flexibility in chip customization. This could mean that NVIDIA can more easily tailor its chips to meet the specific needs of various consumer and enterprise applications, potentially gaining a competitive edge against rivals like AMD.

While Blackwell's release is still a few years away, these early tidbits paint a picture of an architecture that isn't just an incremental improvement but could represent a more significant shift in how NVIDIA designs its GPUs. NVIDIA's potential competitor is AMD's upcoming MI300 GPU, which utilized chiplets in its designs. Chiplets also provide ease of integration as smaller dies provide better wafer yields, meaning that it makes more sense to switch to smaller dies and utilize chiplets economically.

QuickLogic & YorChip Collaborate on Development of Low-Power, Low-Cost UCIe FPGA Chiplets

QuickLogic Corporation, a developer of embedded FPGA (eFPGA) IP, ruggedized FPGAs and Endpoint AI/ML solutions, and YorChip, a pioneering startup specializing in UCIe-compatible IP, have formed a strategic partnership to revolutionize the world of FPGA chiplets. The collaboration will result in a groundbreaking lineup of FPGA chiplets optimized for low power consumption and low cost, opening new possibilities for a wide range of applications, including the fast-growing edge IoT and AI/ML markets.

According to Yole Group, a market research company, by 2023, they expect chiplet adoption will lead to a TAM of chiplet-based integrated circuits in excess of $200B, across the consumer, automotive defense, aerospace, industrial, and medical markets. Since discrete FPGAs are already prevalent in those same markets, wide adoption of eFPGA-based UCIe (Unified Chiplet Interconnect Express) enabled chiplets is expected, and QuickLogic and YorChip are well-positioned to capitalize on this growth opportunity.

AMD "Navi 4C" GPU Detailed: Shader Engines are their own Chiplets

"Navi 4C" is a future high-end GPU from AMD that will likely not see the light of day, as the company is pivoting away from the high-end GPU segment with its next RDNA4 generation. For AMD to continue investing in the development of this GPU, the gaming graphics card segment should have posted better sales, especially in the high-end, which it didn't. Moore's Law is Dead scored details of what could have been a fascinating technological endeavor for AMD, in building a highly disaggregated GPU.

AMD's current "Navi 31" GPU sees a disaggregation of the main logic components of the GPU that benefit from the latest 5 nm foundry node to be located in a central Graphics Compute Die; surrounded by up to six little chiplets built on the older 6 nm foundry node, which contain segments of the GPU's Infinity Cache memory, and its memory interface—hence the name memory cache die. With "Navi 4C," AMD had intended to further disaggregate the GPU, identifying even more components on the GCD that can be spun out into chiplets; as well as breaking up the shader engines themselves into smaller self-contained chiplets (smaller dies == greater yields and lower foundry costs).

AMD Navi 32 RDNA 3 GPU Spotted in Forbes Video

Forbes published its video interview with AMD CEO and President Lisa Su at the end of May, but it has taken two weeks for hardware news sites to realize that unreleased silicon was in plain view within the spotlight piece. Folks likely regarded it as a simple puff piece due to the title reading "This CEO Made AMD Billions - Now She Wants To Dominate The Market With AI." Hoang Anh Phu, a Vietnamese technology enthusiast, managed to pay close attention to a curious segment in the Forbes video and uploaded AI-upscaled screengrabs to Twitter along with the comment/question: "Navi 32 die shot(?!)."

RDNA3 Navi 31 and Navi 33 GPU products have already reached the retail market—AMD's high-end (chiplet design) Radeon RX 7900-series is based on the former and it launched last December. The latter arrived in the (monolithic N33 XL) form of Radeon RX 7600 cards at the end of May 2023. Even board partners are seemingly becoming impatient about a lack of new offerings in the mid-range—Sapphire is very likely to release another previous gen Radeon RX 6750 XT custom card this week in China. Team Red has not publicly acknowledged that Navi 32 is a work in-progress, so it is slightly odd that an example sat next to EPYC Genoa, Raphael, and Raphael X3D dies on a table—as spotted in the Forbes feature. Screenshots show an Infinity Cache setup with four memory stacks on a previously unseen die. Leaks have indicated that Navi 32 will be a chiplet design with a GCD (200 mm²) in the middle, surrounded by the four MCDs (37.5 mm²). The full package area size is eyeball estimated to occupy around 350 mm² of space, which corroborates info uncovered in the past.

Intel Arrow Lake-HX Interposer Appears Online

The Intel Design tools webpage has this week once again provided an early preview of upcoming processors - following on from an LGA1851-MTL-S CPU interposer appearing on the site late last month - indicating that a Meteor Lake-S desktop CPU range was due at some point later in 2023. Intel's latest webpage entry features the "BGA2114-ARL-HX Interposer for the Gen 5 VR Test Tool" with an SKU code that reads: "Q6B2114ARLHX."

The BGA 2114 design points to a mobile processor platform, and industry analysts are fairly certain that Intel is preparing next generation high-end laptop CPUs in the form of its rumored Arrow Lake-HX lineup. This range is set to succeed the 13th generation Core-HX Raptor Lake family of mobile processors. The new BGA package looks to be slightly larger than the closest predecessor, possibly accommodating Intel's new "disaggregated" tile-based (tile is their term for chiplet) internal layout.

AMD's Dr. Lisa Su Thinks That Moore's Law is Still Relevant - Innovation Will Keep Legacy Going

Barron's Magazine has been on a technology industry kick this week and published their interview with AMD CEO Dr. Lisa Su on May 3. The interviewer asks Su about her views on Moore's Law and it becomes apparent that she remains a believer of Gordon Moore's (more than half-century old) prediction - Moore, an Intel co-founder passed away in late March. Su explains that her company's engineers will need to innovate in order to carry on with that legacy: "I would certainly say I don't think Moore's Law is dead. I think Moore's Law has slowed down. We have to do different things to continue to get that performance and that energy efficiency. We've done chiplets - that's been one big step. We've now done 3-D packaging. We think there are a number of other innovations, as well." Expertise in other areas is also key in hitting technological goals: "Software and algorithms are also quite important. I think you need all of these pieces for us to continue this performance trajectory that we've all been on."

When asked about the challenges involved in advancing CPU designs within limitations, Su responds with: "Yes. The transistor costs and the amount of improvement you're getting from density and overall energy reduction is less from each generation. But we're still moving (forward) generation to generation. We're doing plenty of work in 3 nanometer today, and we're looking beyond that to 2 nm as well. But we'll continue to use chiplets and these type of constructions to try to get around some of the Moore's Law challenges." AMD and Intel continue to hold firm with Moore's Law, even though slightly younger upstarts disagree (see NVIDIA). Dr. Lisa Su's latest thoughts stay consistent with her colleague's past statements - AMD CTO Mark Papermaster reckoned that the theory is pertinent for another six to eight years, although it could be a costly endeavor for AMD - the company believes that it cannot double transistor density every 18 to 24 months without incurring extra expenses.

Intel "Emerald Rapids" Doubles Down on On-die Caches, Divests on Chiplets

Finding itself embattled with AMD's EPYC "Genoa" processors, Intel is giving its 4th Gen Xeon Scalable "Sapphire Rapids" processor a rather quick succession in the form of the Xeon Scalable "Emerald Rapids," bound for Q4-2023 (about 8-10 months in). The new processor shares the same LGA4677 platform and infrastructure, and much of the same I/O, but brings about two key design changes that should help Intel shore up per-core performance, making it competitive to EPYC "Zen 4" processors with higher core-counts. SemiAnalysis compiled a nice overview of the changes, the two broadest points of it being—1. Intel is peddling back on the chiplet approach to high core-count CPUs, and 2., that it wants to give the memory sub-system and inter-core performance a massive performance boost using larger on-die caches.

The "Emerald Rapids" processor has just two large dies in its extreme core-count (XCC) avatar, compared to "Sapphire Rapids," which can have up to four of these. There are just three EMIB dies interconnecting these two, compared to "Sapphire Rapids," which needs as many as 10 of these to ensure direct paths among the four dies. The CPU core count itself doesn't see a notable increase. Each of the two dies on "Emerald Rapids" physically features 33 CPU cores, so a total of 66 are physically present, although one core per die is left unused for harvesting, the SemiAnalysis article notes. So the maximum core-count possible commercially is 32 cores per die, or 64 cores per socket. "Emerald Rapids" continues to be based on the Intel 7 process (10 nm Enhanced SuperFin), probably with a few architectural improvements for higher clock-speeds.

Synopsys, TSMC and Ansys Strengthen Ecosystem Collaboration to Advance Multi-Die Systems

Accelerating the integration of heterogeneous dies to enable the next level of system scalability and functionality, Synopsys, Inc. (Nasdaq: SNPS) has strengthened its collaboration with TSMC and Ansys for multi-die system design and manufacturing. Synopsys provides the industry's most comprehensive EDA and IP solutions for multi-die systems on TSMC's advanced 7 nm, 5 nm and 3 nm process technologies with support for TSMC 3DFabric technologies and 3Dblox standard. The integration of Synopsys implementation and signoff solutions and Ansys multi-physics analysis technology on TSMC processes allows designers to tackle the biggest challenges of multi-die systems, from early exploration to architecture design with signoff power, signal and thermal integrity analysis.

"Multi-die systems provide a way forward to achieve reduced power and area and higher performance, opening the door to a new era of innovation at the system-level," said Dan Kochpatcharin, head of Design Infrastructure Management Division at TSMC. "Our long-standing collaboration with Open Innovation Platform (OIP) ecosystem partners like Synopsys and Ansys gives mutual customers a faster path to multi-die system success through a full spectrum of best-in-class EDA and IP solutions optimized for our most advanced technologies."
Return to Keyword Browsing
Nov 21st, 2024 07:51 EST change timezone

New Forum Posts

Popular Reviews

Controversial News Posts