News Posts matching #iGPU

Return to Keyword Browsing

Intel to Tease Arc "Battlemage" Discrete GPU in December?

Intel is expected to debut its next-generation Arc "Battlemage" discrete GPU in December 2024, or ahead of the 2025 CES, HotHardware reports, citing Golden Pig Upgrade, a reliable source with GPU leaks. The source says that they expect "wonderful performance" for the GPU. Intel has a lot invested in its PC graphics division, across not just its two-year-old Arc "Alchemist" discrete GPUs, but also the integrated graphics solutions it's been launching with its Core Ultra processor generations. It debuted the DirectX 12 Ultimate-capable Xe-LPG graphics architecture with Core Ultra "Meteor Lake" and Arc Graphics branding, which it carried forward to the Core Ultra Series 200 "Arrow Lake" on the desktop platform. Meanwhile, "Battlemage" got debuted as the iGPU of the Core Ultra 200V series "Lunar Lake" mobile processor, which posted gaming performance beating that of the Ryzen 8000 "Hawk Point" processor, but falling short of the Ryzen AI 300 series "Strix Point."

Intel is expected to tap into a fairly new foundry node for the Arc "Battlemage" discrete GPU series. Its chips could strike a performance/Watt and performance/price inflection point in the performance segment, that drives the most volumes for NVIDIA and AMD. It is this exact segment that AMD has withdrawn from the enthusiast segment to focus on, with its next-generation Radeon RDNA 4 generation. With "Alchemist," Intel already laid a strong foundation for hardware-accelerated ray tracing and AI, and the company is only expected to advance on these fronts further. Could "Battlemage" and "Granite Rapids" go down as the most exciting products from Intel in 2024? We should find out next month.

Geekom's Mini Air12 Lite mini PC is now on sale for less than $200

GEEKOM, a Taiwanese tech company also known as the Green Mini PC Global Leader, just released its first model powered by an Intel Alder Lake-N series SoC. The GEEKOM Mini Air12 Lite is a tiny desktop PC with an Intel N100 quad-core processor, DDR4-3200 RAM, a PCIe Gen 3 SSD, and support for dual displays. The mini PC is now available on Amazon and GEEKOM's official website.

The Mini Air12 Lite measures 135.5 x 115.5 x 34.5 mm (0.5L) and weighs about 1 kilogram. It features a single SO-DIMM slot which supports up to 16 GB of DDR4-3200 MHz memory, and an M.2 2280 slot that can accommodate a PCIe 3.0 or SATA SSD of up to 1 TB. The mini PC runs on a licensed copy of Windows 11 Pro out of the box.

Upcoming AYANEO REVO 3 Gaming Handheld Teased Yet Again

AYANEO has teased its upcoming handheld, the REVO 3, once again via a recent YouTube video. Much like its previous rounds of teasers, details regarding the underlying specs of the system were suspiciously absent. With the advent of extremely potent APUs with powerful iGPUs, gaming handhelds are rapidly increasing in popularity, and AYANEO clearly does not wish to be left out either.

The aforementioned YouTube video gives us a sneak peek at what the REVO 3 would look like, giving us a glimpse of its design which honestly looks like any other handheld on the market. The video also portrays its various buttons and analog sticks, but they appear to be exactly what we have come to expect from these handhelds.

Intel Arc GPU Graphics Drivers 101.6129 WHQL Released

Intel today released the latest version of its Arc GPU Graphics drivers. Version 101.6129 WHQL adds support for the Xe-LPG integrated graphics of the Core Ultra "Arrow Lake-S" desktop processors. The drivers also come with optimization for "Call of Duty: Black Ops 6," and performance improvements for "Diablo IV: Vessel of Hatred" to the Xe-LPG iGPU of Core Ultra 100-series "Meteor Lake" mobile processors. The drivers fix an issue applicable to Arc A-series discrete GPUs where Blender may experience an application crash. Grab the driver from the link below.

DOWNLOAD: Intel Arc GPU Graphics Drivers 101.6129 WHQL

AMD Ryzen Z2 Extreme to Feature a 3+5 Core Configuration

The second generation of AMD Ryzen Z-series processors for handheld gaming consoles, will be led by the Ryzen Z2 Extreme. There will also be an affordable Ryzen Z2 (non-Extreme). We've known for some time that the Z2 Extreme is based on the 4 nm "Strix Point" monolithic silicon, with some optimization (the highest bins to facilitate the best energy efficiency); but now we have a few more details thanks to a leak by Golden Pig Upgrade. AMD's engineering effort with the Z2 Extreme will be to give the console the most generational performance uplift from the iGPU, rather than the CPU.

The "Strix Point" silicon features a significantly updated iGPU from the previous-generation "Phoenix." It's based on the more efficient RDNA 3.5 graphics architecture, which is better optimized for LPDDR5 memory; and comes with 16 compute units (CU), compared to 12 on the "Phoenix." The Ryzen Z2 Extreme will come with all 16 CU enabled. The CPU is where some interesting changes are planned. The "Strix Point" silicon features a dual-CCX CPU, one of these contains four "Zen 5" CPU cores sharing a 16 MB L3 cache, while the other features eight "Zen 5c" cores sharing an 8 MB L3 cache. For the Ryzen Z2 Extreme, AMD is going with an odd 3+5 core configuration. What this means is that the Ryzen Z2 Extreme will have 3 "Zen 5" cores, and 5 "Zen 5c" cores. The L3 cache on the CCX with "Zen 5" cores has been reduced to 8 MB in size. On paper, this is still an 8-core/16-thread CPU with 16 MB of L3 cache (same as "Phoenix,") but now you know that there's more going on.

Intel "Arrow Lake-H" SKUs Leak: Up to 16 Cores, with LPE Cores Resurfacing

As we await the launch of Intel's "Arrow Lake-S" Core Ultra 200S series of processors for desktops, we are getting some new leaks about Intel's mainstream mobile "Arrow Lake-H" update. A month ago, we got the specification table of the high-end mobile "Arrow Lake-HX," and now, thanks to Jaykihn X, we have the mainstream laptop chip specifications as well. The top-of-the-line includes Intel Core Ultra 9 285H, a 45 W TDP SKU with six P-cores, eight E-cores, and two LPE cores. The CPU packs integrated Xe2 graphics with eight cores and 24 MB of total L3 cache and has a maximum boost of 5.4 GHz for P-cores.

Moving down the stack, there are Core Ultra 7 265H and Core Ultra 5 255H SKUs, which feature the same P/E/LPE core configuration. However, these SKUs are rated for 28 W TDP, having lower maximum frequencies and the same iGPU configuration. This time, we also have two Core Ultra 3 SKUs, with Core Ultra 3 235H and 225H bringing four P-cores, eight E-cores, and two LPE-cores in the 28 W package. The Core Ultra 3 235H has eight Xe2 cores in its iGPU, while the lowest-end Core Ultra 3 225H has only seven Xe2 iGPU cores. For a complete set of specifications, including all clock speeds in base and boost, please check out the table below.

Intel "Lunar Lake" Compute Tile Annotated and PCH Tile Pictured

Some of the first die-shots and annotations of the Intel Core Ultra 200V "Lunar Lake" processor surfaced on the web, thanks to die-shots by GeenWens and Kurnalsalts on Twitter. Be sure to check out our Lunar Lake Technical Deep-dive article to learn the basics of how Lunar Lake is different from "Meteor Lake." Both are disaggregated chiplet-based processors, but Lunar Lake remodels things a bit. All the logic engines of the processor—the CPU, the iGPU, and the NPU, are located in a centralized Compute tile that's built on the TSMC 3 nm process, while all the I/O controllers are spun out to the Platform Controller tile built on TSMC 6 nm, which sit on a Foveros base tile that acts as an interposer, facilitating high-density microscopic connections between the two tiles. The base tile sits on the fiberglass substrate, which also has stacked LPDDR5X memory for either 16 GB or 32 GB of on-package system memory.

The Kurnalsalts annotation provides a good lay of the land for the Compute tile. The most striking aspect of it is the CPU. "Lunar Lake" comes with a 4P+4E core hybrid CPU, but the two kinds of cores do not share a last-level cache or sit in a ringbus, unlike in case of the Compute tile of "Meteor Lake." The four "Lion Cove" P-cores each come with 2.5 MB of dedicated L2 caches, and share a 12 MB L3 cache. The four "Skymont" E-cores are not part of the ringbus connecting the four P-cores, rather they are physically separated, much like the low-power island E-cores on "Meteor Lake." The E-core cluster shares a 4 MB L2 cache among the four E-cores. This E-core cluster is directly connected to the switching fabric of the Compute tile.

AMD Ryzen AI Max 390 "Strix Halo" Surfaces in Geekbench AI Benchmark

In case you missed it, AMD's new madcap enthusiast silicon engineering effort, the "Strix Halo," is real, and comes with the Ryzen AI Max 300 series branding. These are chiplet-based mobile processors with one or two "Zen 5" CCDs—same ones found in "Granite Ridge" desktop processors—paired with a large SoC die that has an oversized iGPU. This arrangement lets AMD give the processor up to 16 full-sized "Zen 5" CPU cores, and an iGPU with as many as 40 RDNA 3.5 compute units (2,560 stream processors), and a 256-bit LPDDR5/x memory interface for UMA.

"Strix Halo" is designed for ultraportable gaming notebooks or mobile workstations where low PCB footprint is of the essence, and discrete GPU is not an option. For enthusiast gaming notebooks with discrete GPUs, AMD is designing the "Fire Range" processor, which is essentially a mobile BGA version of "Granite Ridge," and a successor to the Ryzen 7045 series "Dragon Range." The Ryzen AI Max series has three models based on CPU and iGPU CU counts—the Ryzen AI Max 395+ (16-core/32-thread with 40 CU), the Ryzen AI Max 390 (12-core/24-thread with 40 CU), and the Ryzen AI Max 385 (8-core/16-thread, 32 CU). An alleged Ryzen AI Max 390 engineering sample surfaced on the Geekbench AI benchmark online database.

Intel Core Ultra 200V "Lunar Lake" Launches on September 3: Acer

Intel's ambitious new ultraportable mobile processor series, the Core Ultra 200V series "Lunar Lake," launches on September 3, according to an Acer announcement for a media event covering the launch of its notebooks based on these chips. Acer scheduled this event on September 4, which means Intel to launch these processors no later than September 3. Media events by PC OEMs tend to follow a day after Intel's launch of a new processor generation or platform. A September 3 launch would precede the IFA 2024 Conference in Berlin, which kicks off on September 6, but which is open to press and industry delegates a little sooner, as is the norm for trade shows.

The Core Ultra 200V "Lunar Lake" is Intel's first processor generation to implement MoP (memory on package), eliminating the need for discrete memory modules. This reduces the Z height as well as PCB footprint of the platform, enabling thinner notebooks. MoP also has certain power and latency advantages compared to discrete memory. The compute complex of "Lunar Lake" consists of a 4P+4E CPU with "Lion Cove" P-cores, and "Skymont" E-cores. This is also the first processor to debut Intel's Xe2 "Battlemage" graphics architecture, as it powers its iGPU. It packs a powerful NPU that meets Microsoft Copilot+ AI PC requirements. You can learn all about "Lunar Lake" in our architecture deep-dive.

ASUS Readies 2025 ROG Z13 Flow Gaming Tablet Powered by AMD "Strix Halo"

ASUS is betting bigger on game consoles or PCs built like consoles. The company in 2023 introduced the first ROG Z13 Flow, a gaming-grade tablet, powered by a 13th Gen Core "Raptor Lake" processor and mid-tier RTX 40-series "Ada" discrete mobile GPU. The 2025 ROG Z13 Flow is a 13-inch, 16:10 tablet with an integrated kickstand. You can use it like a handheld with touch controls, or place it on a surface and use conventional gaming peripherals, such as keyboard+mouse, or a game controller. Since the device is meant to provide a AAA gaming experience, it packs some serious kit.

Apparently, the 2025 ASUS ROG Z13 Flow will implement AMD's upcoming "Strix Halo" processor that packs up to 16 "Zen 5" CPU cores, and an oversized iGPU with 40 RDNA 3.5 compute units (2,560 stream processors), and a 256-bit LPDDR5 memory interface, besides a 50 TOPS-class NPU to qualify for Copilot+ AI PC rating. Such a chip would meet the hardware goals of the ROG Z13 Flow, and eliminate the need for a discrete GPU, letting ASUS reduce the mainboard size. The power management of "Strix Halo" would see the CPU and SoC given a roughly 30 W budget, and the iGPU roughly 80 W. Its cooling solution focuses squarely on the "Strix Halo" chip, with no other major chip on the device (the SoC is wired out to serve all chipset functions, no FCH needed).

AMD Strix Point SoC Reintroduces Dual-CCX CPU, Other Interesting Silicon Details Revealed

Since its reveal last week, we got a slightly more technical deep-dive from AMD on its two upcoming processors—the "Strix Point" silicon powering its Ryzen AI 300 series mobile processors; and the "Granite Ridge" chiplet MCM powering its Ryzen 9000 desktop processors. We present a closer look into the "Strix Point" SoC in this article. It turns out that "Strix Point" takes a significantly different approach to heterogeneous multicore than "Phoenix 2." AMD gave us a close look at how this works. AMD built the "Strix Point" monolithic silicon on the TSMC N4P foundry node, with a die-area of around 232 mm².

The "Strix Point" silicon sees the company's Infinity Fabric interconnect as its omnipresent ether. This is a point-to-point interconnect, unlike the ringbus on some Intel processors. The main compute machinery on the "Strix Point" SoC are its two CPU compute complexes (CCX), each with a 32b (read)/16b (write) per cycle data-path to the fabric. The concept of CCX makes a comeback with "Strix Point" after nearly two generations of "Zen." The first CCX contains the chip's four full-sized "Zen 5" CPU cores, which share a 16 MB L3 cache among themselves. The second CCX contains the chip's eight "Zen 5c" cores that share a smaller 8 MB L3 cache. Each of the 12 cores has a 1 MB dedicated L2 cache.

Ryzen 9000 Chip Layout: New Details Announced

AMD "Granite Ridge" is codename for the four new Ryzen 9000 series desktop processors the company plans to launch on July 31, 2024. The processor is built in the Socket AM5 package, and is meant to be backwards compatible with AMD 600-series chipset motherboards, besides the new 800-series chipset ones that will launch alongside. "Granite Ridge" is a chiplet-based processor, much like the Ryzen 7000 "Raphael," Ryzen 5000 "Vermeer," and Ryzen 3000 "Matisse." AMD is carrying over the 6 nm client I/O die over from "Raphael" in an effort to minimize development costs, much in the same way it carried over the 12 nm cIOD for "Vermeer" from "Matisse."

The SoC I/O features of "Granite Ridge" are contemporary, with its awesome 28-lane PCI-Express Gen 5 root complex that allows a PCI-Express 5.0 x16, two CPU-attached M.2 Gen 5 slots, and a Gen 5 x4 chipset bus. There's also a basic integrated graphics solution based on the older RDNA 2 graphics architecture; which should make these processors fit for all use-cases that don't need discrete graphics. The iGPU even has multimedia accelerators, an audio coprocessor, a display controller, and USB 3.2 interfaces from the processor.

AMD "Strix Halo" Processor Boosts up to 5.35 GHz, Geekbenched

AMD's upcoming "Strix Halo" mobile processor that features up to 16 "Zen 5" CPU cores and a powerful iGPU with 40 compute units, is beginning to surface in online benchmark databases. We've gone into the juicy technical bits about the processor in our older articles, but put simply, it is a powerful mobile processor meant to square off against the likes of the Apple M3 Pro and M3 Max. A chiplet-based processor, much like the upcoming "Granite Ridge" desktop processor and "Fire Range" mobile processor, "Strix Halo" features up to 16 full-sized "Zen 5" cores, as it uses up to two of the same "Eldora" CCDs as them; but wired to a large I/O die that contains the oversized iGPU, and an NPU, besides the memory controllers. The iGPU has 40 compute units (2,560 stream processors), and is based on the RDNA 3.5 graphics architecture, while the NPU is the same 50 TOPS-class unit carried over from "Strix Point."

A prototype HP laptop powered by a "Strix Halo" processor that uses a single 8-core "Zen 5" CCD, was spied on the web. This chip has eight full-sized "Zen 5" cores that share a 32 MB L3 cache. The iGPU on the I/O die has its own 32 MB Infinity Cache memory that cushions memory transfers. In our older reports, we speculated as to what the memory interface of "Strix Halo" would be. It turns out that the chip exclusively features a 256-bit wide LPDDR5X memory interface, which is double the bus width of "Strix Point." This is essentially what a "quad-channel DDR5" memory interface would be, and AMD is using a memory speed standard of at least LPDDR5X-8000. From the machine's point of view, this would be just a couple of hardwired LPDDR5X chips, or a pair of LPCAMM 2 modules. Back to the benchmarks, and we are shown a single-thread CPU score of 2099 to 2177 points, and a multithreaded score ranging between 5477 points to 13993 points. The laptop was tested with an unknown version and distribution of Linux. The CPU cores are shown boosting up to 5.35 GHz.

Intel Intros 14th Gen Core "E" Embedded Processors with E-cores Disabled

Intel introduced a line of 14th Gen Core "Raptor Lake Refresh" Socket LGA1700 processors for the embedded systems market. A highlight of these chips is that they come with their "Gracemont" E-core clusters disabled, and are pure P-core chips. It's interesting that Intel targets these chips for the embedded systems segment, but isn't building these in the non-socketed BGA packages carried over from its mobile platforms. Intel is addressing nearly all performance market-segments with these chips, including the very top. The Core i9-14901KE processor leading the pack is an 8-core/16-thread chip with eight "Raptor Cove" cores sharing the full 36 MB L3 cache available on the "Raptor Lake-S" die, a maximum boost frequency of 5.80 GHz, base frequency of 3.80 GHz, and processor base power of 125 W. The chip features an iGPU. The "K" in KE denotes that the chip supports overclocking.

Next up, is the Core i9-14901E, the 65 W sibling of this chip, which lacks an unlocked multiplier, and boosts up to 5.60 GHz, with a 2.80 GHz base frequency. Things get interesting with the Core i7-14701E, because the differentiator between the Core i9 and Core i7 SKUs is E-core count, and here we see the i7-14701 retaining the same 8-core/16-thread pure P-core configuration as the Core i9 chips, but with a touch lower frequencies of 5.40 GHz maximum boost, and 2.60 GHz base.

Intel Core Ultra 200 "Arrow Lake-S" Desktop Processor Core Configurations Surface

Intel is preparing a complete refresh of its desktop platform this year, with the introduction of the Core Ultra 200 series processors based on the "Arrow Lake" microarchitecture. The company skipped a desktop processor based on "Meteor Lake," probably because it didn't meet the desired multithreaded performance targets for Intel as it maxed out at 6P+8E+2LP, forcing Intel to come up with the 14th Gen Core "Raptor Lake Refresh" generation to see it through 2H-2023 and at least three quarters of 2024. The company, in all likelihood, will launch the new "Arrow Lake-S" Core Ultra 200 series toward late-Q3 or early-Q4 2024 (September-October). The first wave will include the overclocker-friendly K- and KF SKUs, alongside motherboards based on the top Intel Z890 chipset. 2025 will see the series ramp to more affordable processor models, and mainstream chipsets, such as the B860. These processors require a new motherboard, as Intel is introducing the new Socket LGA1851 with them.

Core configurations of the "Arrow Lake-S" chip surfaced on the web thanks to Jaykihn, a reliable source with Intel leaks. In its maximum configuration, the chip is confirmed to feature 8 P-cores, and 16 E-cores. There are no low-power island E-cores. Each of the 8 P-cores is a "Lion Cove" featuring 3 MB of dedicated L2 cache; while each the E-cores are "Skymont," arranged in 4-core modules that share 4 MB L2 caches among them. Intel claims that the "Lion Cove" P-core offers a 14% IPC increase over the "Redwood Cove" P-core powering "Meteor Lake," which in turn had either equal or a 1% IPC regression compared to "Raptor Cove." This would put "Lion Cove" at a 13-14% IPC advantage over the "Raptor Cove" cores. It's important to note here, that the "Lion Cove" P-cores lack HyperThreading, so Intel will be banking heavily on the "Skymont" E-cores to shore up generational multithreaded performance increase. "Skymont" was a show-stopper at Intel's Computex event, with a nearly 50% IPC gain over previous generations of Intel E-cores, which puts it at par with the "Raptor Cove" cores in single-thread performance.

AMD "Strix Halo" a Large Rectangular BGA Package the Size of an LGA1700 Processor

Apparently the AMD "Strix Halo" processor is real, and it's large. The chip is designed to square off against the likes of the Apple M3 Pro and M3 Max, in letting ultraportable notebooks have powerful graphics performance. A chiplet-based processor, not unlike the desktop socketed "Raphael," and mobile BGA "Dragon Range," the "Strix Halo" processor consists of one or two CCDs containing CPU cores, wired to a large die, that's technically the cIOD (client I/O die), but containing an oversized iGPU, and an NPU. The point behind "Strix Halo" is to eliminate the need for a performance-segment discrete GPU, and conserve its PCB footprint.

According to leaks by Harukaze5719, a reliable source with AMD leaks, "Strix Halo" comes in a BGA package dubbed FP11, measuring 37.5 mm x 45 mm, which is significantly larger than the 25 mm x 40 mm size of the FP8 BGA package that the regular "Strix Point," "Hawk Point," and "Phoenix" mobile processors are built on. It is larger in area than the 40 mm x 40 mm FL1 BGA package of "Dragon Range" and upcoming "Fire Range" gaming notebook processors. "Strix Halo" features one or two of the same 4 nm "Zen 5" CCDs featured on the "Granite Ridge" desktop and "Fire Range" mobile processors, but connected to a much larger I/O die, as we mentioned.

Intel Arc Xe2 "Battlemage" Discrete GPUs Made on TSMC 4 nm Process

Intel has reportedly chosen the TSMC 4 nm EUV foundry node for its next generation Arc Xe2 discrete GPUs based on the "Battlemage" graphics architecture. This would mark a generational upgrade from the Arc "Alchemist" family, which Intel built on the TSMC 6 nm DUV process. The TSMC N4 node offers significant increases in transistor densities, performance, and power efficiency over the N6, which is allowing Intel to nearly double the Xe cores on its largest "Battlemage" variant in numerical terms. This, coupled with increased IPC, clock speeds, and other features, should make the "Battlemage" contemporary against today's AMD RDNA 3 and NVIDIA Ada gaming GPUs. Interestingly, TSMC N4 isn't the most advanced foundry node that the Xe2 "Battlemage" is being built on. The iGPU powering Intel's Core Ultra 200V "Lunar Lake" processor is part of its Compute tile, which Intel is building on the more advanced TSMC N3 (3 nm) node.

Prices of AMD Ryzen 8000G Desktop APUs Continue Downward Trend, 8600G Now at $152

AMD Ryzen 8000G desktop APUs combine "Zen 4" CPU cores with a powerful iGPU based on the RDNA 3 architecture, and are the first desktop processors to pack an NPU with 16 TOPS of performance on tap. These Socket AM5 processors based on the "Hawk Point" silicon have been on a downward price trend. Last month, the top Ryzen 7 8700G asked for $299 compared to its $329 launch price; and the 6-core Ryzen 5 8600G went for $199, down from its $229 launch price. This month, the downward pricing trend continues.

According to the latest prices charted on B&H Photo, the Ryzen 7 8700G is now just $269, a $60 cut from its launch price; while the Ryzen 5 8600G faces its biggest ever cut, sending it all the way down to $152, a $77 or a 33% reduction from its launch price. At this price, the 8600G is a formidable processor, with a 6-core/12-thread CPU based on the "Zen 4" architecture (all 6 of which are full-sized "Zen 4" cores); a 16 TOPS NPU, and a Radeon 760M iGPU with 8 compute units (512 stream processors). The Ryzen 5 8500G based on the "Phoenix 2" silicon, with a combination of 2 "Zen 4" and 4 "Zen 4c" cores, is now priced at $139, a $40 cut from its original.

Intel Arc GPU Graphics Drivers 101.5594 Beta Released

Intel has released its latest version of Arc GPU Graphics drivers for A-series discrete GPUs and Arc Graphics iGPUs, version 101.5594 Beta. The new drivers bring a fix for Citrix Workspace application on both Intel Arc A-Series and Intel Core Ultra CPU with Intel Arc GPUs that have exhibited sluggish behavior when interacting with a virtual desktop.

Unfortunately, there are no further fixes or optimizations as the previous Arc GPU Graphics drivers version 101.5593 Beta already brought optimizations for Final Fantasy XIV: Dawntrail and The First Descendant games. There are still plenty of known issues on Intel Arc A-Series graphics products including ones with games like No Man's Sky, Enshrouded, Doom Eternal and application like Topaz Video AI. There are also known issues with Intel Arc Control Studio as well with corruption of the recording file when the mouse cursor is enabled during HDR capture and issues with schedule updates for drivers.

DOWNLOAD: Intel Arc GPU Graphics Drivers 101.5594 Beta

TSMC Begins 3 nm Production for Intel's "Lunar Lake" and "Arrow Lake" Tiles

TSMC has commenced mass-production of chips for Intel on its 3 nm EUV FinFET foundry node, according to a report by Taiwan industry observer DigiTimes. Intel is using the TSMC 3 nm node for the compute tile of its upcoming Core Ultra 300 "Lunar Lake" processor. The company went into depth about "Lunar Lake" in its Computex 2024 presentation. While a disaggregated chiplet-based processor like "Meteor Lake," the new "Lunar Lake" chip sees the CPU cores, iGPU, NPU, and memory controllers sit on a single chiplet called the compute tile, built on the 3 nm node; while the SoC and I/O components are disaggregated the chip's only other chiplet, the SoC tile, which is built on the TSMC 6 nm node.

Intel hasn't gone into the nuts and bolts of "Arrow Lake," besides mentioning that the processor will feature the same "Lion Cove" P-cores and "Skymont" E-cores as "Lunar Lake," albeit arranged in a more familiar ringbus configuration, where the E-core clusters share L3 cache with the P-cores (something that doesn't happen on "Lunar Lake"). "Arrow Lake" also features a iGPU based on the same Xe2 graphics architecture as "Lunar Lake," and will feature an NPU that meets Microsoft Copilot+ AI PC requirements. What remains a mystery about "Arrow Lake" is the way Intel will go about organizing the various chiplets or tiles. Reports from February 2024 mentioned Intel tapping into TSMC 3 nm for just the disaggregated graphics tile of "Arrow Lake," but we now know from "Lunar Lake" that Intel doesn't shy away from letting TSMC fabricate its CPU cores. The first notebooks powered by "Lunar Lake" are expected to hit shelves within Q3-2024, with "Arrow Lake" following on in Q4.

AMD Zen 5 Powered Ryzen AI 300 Series Mobile Processors Supercharge Next Gen Copilot+ AI PCs

AMD today launched its Ryzen AI 300 series mobile processors, codenamed "Strix Point." These chips implement a combination of the AMD "Zen 5" microarchitecture for the CPU cores, the XDNA 2 architecture for its powerful new NPU, and the RDNA 3+ graphics architecture for its 33% faster iGPU. The new "Zen 5" microarchitecture provides a 16% generational IPC uplift over "Zen 4" on the backs of several front-end enhancements, wider execution pipelines, more intra core bandwidth, and a revamped FPU that doubles performance of AI and AVX-512 workloads. AMD didn't go in-depth with the microarchitecture, but the broad points of "Zen 5" are detailed in our article for the Ryzen 9000 "Granite Ridge" desktop processors. Not only is AMD using these faster "Zen 5" CPU cores, but also increased the CPU core count by 50%, for a maximum of 12-core/24-thread.

The "Strix Point" monolithic silicon is built on the 4 nm foundry node, and packs a CPU core complex (CCX) with 12 CPU cores, four of these are "Zen 5," which can achieve the highest possible boost frequencies, the other eight are "Zen 5c" cores that feature an identical IPC and the full ISA, including support for SMT; but don't boost as high as the "Zen 5" cores. AMD is claiming a productivity performance increase ranging between 4% and 73% for its top model based in the series, when compared to Intel's Core Ultra 9 185H "Meteor Lake" processor. The iGPU sees its compute unit (CU) count go all the way up to 16 from 12 in the previous generation, and this yields a claimed 33% increase in iGPU gaming performance compared to the integrated Arc graphics of the Core Ultra 9 185H. Lastly, the XDNA 2 NPU sees more that triple the AI inference performance to 50 AI TOPS, compared to the 16 TOPS of the Ryzen 8040 "Hawk Point" processor, and 12 TOPS of Core Ultra "Meteor Lake." This makes the processor meet Microsoft's Copilot+ AI PC requirements.

ASUS Announces the ROG Ally X: Improved Performance, Ergonomics, and Battery Life

ASUS today announced the ROG Ally X, its ambitious new handheld game console that's a step up from the ROG Ally that the company launched last year. The ROG Ally X is powered by the same AMD Ryzen Z1 Extreme processor as the ROG Ally, but with 50% more unified memory—now up to 24 GB of LPDDR5X-7500, which runs at an 18% higher speed than the 16 GB LPDDR5-6400 of the original. The designers also implemented an M.2-2280 NVMe SSD slot, which opens the console up to the widest possible selection of NVMe SSDs. The console includes a 1 TB drive, which is double that of the 500 GB that the ROG Ally comes with. The company has also significantly upgraded the thermal solution of the console with a larger fan, and better thermal venting, which offers 6°C lower gaming temperatures.

Perhaps the biggest feature upgrade is the battery, which is 80 Wh, a 100% increase from the 40 Wh of the original ROG Ally. This may not be a linear 100% increase in battery life from the ROG Ally (due to the various hardware upgrades), but should still pose significant improvements to it. Other hardware updates include USB4, which includes DisplayPort passthrough from the iGPU; besides a separate USB 3.2 Gen 2 type-C. The console supports USB-PD with 140 W fast-charging, and is paired with a first-party GaN-based 140 W fast-charger. Dimensions are similar to those of the ROG Ally, except for 4 mm added thickness, and 70 g added weight (608 g vs. 678 g). Available from July, the ROG Ally X is priced at $799, and includes a 3-month Xbox Game Pass. We went hands on with the console at ASUS's pre-Computex event. Stay tuned for several more announcements form the company in the coming days.

Qualcomm's Success with Windows AI PC Drawing NVIDIA Back to the Client SoC Business

NVIDIA is eying a comeback to the client processor business, reveals a Bloomberg interview with the CEOs of NVIDIA and Dell. For NVIDIA, all it takes is a simple driver update that exposes every GeForce GPU with tensor cores as an NPU to Windows 11, with translation layers to get popular client AI apps to work with TensorRT. But that would need you to have a discrete NVIDIA GPU. What about the vast market of Windows AI PCs powered by the likes of Qualcomm, Intel, and AMD, who each sell 15 W-class processors with integrated NPUs capable of 50 AI TOPS, which is all that Copilot+ needs? NVIDIA held an Arm license for decades now, and makes Arm-based CPUs to this day, with the NVIDIA Grace, however, that is a large server processor meant for its AI GPU servers.

NVIDIA already made client processors under the Tegra brand targeting smartphones, which it winded down last decade. It's since been making Drive PX processors for its automotive self-driving hardware division; and of course there's Grace. NVIDIA hinted that it might have a client CPU for the AI PC market in 2025. In the interview Bloomberg asked NVIDIA CEO Jensen Huang a pointed question on whether NVIDIA has a place in the AI PC market. Dell CEO Michael Dell, who was also in the interview, interjected "come back next year," to which Jensen affirmed "exactly." Dell would be in a front-and-center position to know if NVIDIA is working on a new PC processor for launch in 2025, and Jensen's nod almost confirms this

Minisforum V3 High-Performance AMD AI 3-in-1 Tablet Starts at $1199 Pre-Sale

Minisforum has unveiled a game-changing device that blurs the lines between tablets and laptops: the Minisforum V3. Today, the V3 laptop has hit the Minisforum store. This innovative 3-in-1 tablet is powered by the high-performance AMD Ryzen 7 8840U processor, offering a unique blend of portability and computing power. Unlike its traditional Mini PC design, Minisforum has adopted the popular form factor of Microsoft Surface and Lenovo Yoga tablet PCs with the V3. This versatile device can be a handheld tablet, a laptop with an included magnetic attachable keyboard, or a solo kickstand. At the heart of the Minisforum V3 lies the 8-core, 16-thread Ryzen 7 8840U processor, capable of delivering exceptional performance for demanding tasks. The tablet features a stunning 14-inch 2560 x 1600 IPS screen with a 165 Hz refresh rate and 100% DCI-P3 color gamut coverage, making it an ideal choice for creative professionals and content creators.

The V3's standout feature is its advanced cooling system, which allows the Ryzen 7 8840U and onboard Radeon 780M iGPU to operate at a stable 28 watts. This ensures smooth and efficient performance even under heavy workloads, making it a reliable device for all your tasks. The tablet's screen boasts a remarkable 500 nits of brightness, and its high color gamut coverage makes it perfect for professionals who require accurate color representation. Minisforum has priced the V3 competitively at $1199 at the pre-sale offering, making it an attractive option for those seeking a powerful and versatile device that can adapt to various scenarios. This primary option includes 32 GB of RAM and 1 TB SSD for storage. For early birds, Minisforum offers a V Pen, tempered glass screen protector, and laptop sleeve as a gift. Here is the link to the Minisforum V3 store.

Intel Releases XeSS 1.3, Improves FPS Across Presets with New Resolution Scaling, Improved Upscalers

Intel on Wednesday released the XeSS 1.3 performance enhancement, which works with Intel Arc "Alchemist" discrete GPUs, and Intel Arc iGPUs powering the Core Ultra "Meteor Lake" processors. The new super sampling technology brings several under-the-hood improvements to the upscaler, which improves image quality at a given resolution. Intel leveraged this improved upscaler to rework the resolution-scale of each performance preset, thereby improving performance per preset; while also introducing new presets at both ends of the resolution scale. The company released the XeSS 1.3 SDK on GitHub, so developers can begin exploring the tech and implementing it on their games.

The XeSS 1.3 update is predicated on an improved upscaler. Intel says that it has updated the AI models with new optimizations, and additional pre-training, particularly with difficult to upscale elements (such as meshes, as in textures with a lot of alpha pixels). The updated upscaler offers better reconstruction of detail, better AA, less ghosting, and improved temporal stability. Intel then used this up change the resolution scale across all its presets as detailed in the table below. It introduced the new Ultra Performance preset that does a 3.0x resolution scale, something that didn't exist in the previous versions of XeSS. On the other end of the spectrum is Native AA, a mode that has zero upscaling, but just the full application of the upscaler as a varnish—this is essentially Intel's take on DLAA.
Return to Keyword Browsing
Nov 17th, 2024 08:18 EST change timezone

New Forum Posts

Popular Reviews

Controversial News Posts