News Posts matching #iGPU

Return to Keyword Browsing

AMD Ryzen 8000G Socket AM5 Desktop APU Lineup Detailed

Here is our first look at the higher end of AMD's Ryzen 8000G series Socket AM5 desktop APU lineup. The company is planning to bring its 4 nm "Phoenix" and "Phoenix 2" monolithic silicon to the socketed desktop platform, to cover two distinct markets. Models based on the larger "Phoenix" silicon cater to the market that wants a sufficiently powerful CPU, but with a powerful iGPU that's fit for entry-level gaming, or graphics-intensive productivity tasks; whereas the smaller "Phoenix 2" silicon ties up the lower end of AMD's AM5 desktop processor stack, as it probably has a lower bill of materials than a "Raphael" multi-chip module.

The lineup is led by the Ryzen 7 8700G, a direct successor to the Ryzen 7 5700G "Cezanne." This chip gets the full 8-core/16-thread "Zen 4" CPU, along with its 16 MB shared L3 cache; and the full featured Radeon 780M iGPU with its 12 compute units worth 768 stream processors. The CPU features a maximum boost frequency of 4.20 GHz. This is followed by the Ryzen 5 8600G, which is based on the same "Phoenix" silicon as the 8700G, but with 6 out of 8 "Zen 4" cores enabled, and a maximum CPU boost frequency of 4.35 GHz, and the 16 MB L3 cache left untouched. It's likely that the Radeon 780M is unchanged from the 8700G.
Update 13:59 UTC: A CPU-Z screenshot of the Ryzen 7 8700G surfaced, which confirms that it features the maxed out Radeon 780M iGPU

Sony PlayStation 5 Pro Packs an Updated RDNA3 GPU with 60 CU

Sony is developing the PlayStation 5 Pro console that targets higher refresh-rate gaming at 4K Ultra HD, or higher in-game eye-candy, given its faster hardware. Details about the console are few and far between, given its late-2024 tentative release, but by now the company would have co-developed its semi-custom SoC, so it could spend the next year extensively testing and optimizing it, before mass production in the 2-3 quarters leading up to the launch. Kepler_L2 and Tom Henderson on Twitter are fairly reliable sources for PlayStation hardware leaks, and piecing their recent posts together, VideoCardz compiled the most probable specs of the SoC at the heart of the PlayStation 5 Pro.

The semi-custom SoC powering the PlayStation 5 Pro is co-developed by Sony Computer Entertainment (SCE) and AMD; and is codenamed "Viola." The monolithic chip is built on the TSMC N4P foundry node (4 nm EUV), which is a big upgrade from the 7 nm DUV node on which the "Oberon" SoC powering the original PlayStation 5, and 6 nm DUV node powering the "Oberon Plus" SoC of the refreshed PS5, are based on. Sony is leaving the CPU component largely untouched, it is an 8-core/16-thread unit based on the "Zen 2" microarchitecture, spread across two 4-core CCXs. The CPU has a maximum boost frequency of 4.40 GHz, dialed up from the 3.50 GHz maximum boost of "Oberon." The iGPU is where all the magic happens.

AMD Ryzen 8040 Series "Hawk Point" Mobile Processors Announced with a Faster NPU

AMD today announced the new Ryzen 8040 mobile processor series codenamed "Hawk Point." These chips are shipping to notebook manufacturers now, and the first notebooks powered by these should be available to consumers in Q1-2024. At the heart of this processor is a significantly faster neural processing unit (NPU), designed to accelerate AI applications that will become relevant next year, as Microsoft prepares to launch Windows 12, and software vendors make greater use of generative AI in consumer applications.

The Ryzen 8040 "Hawk Point" processor is almost identical in design and features to the Ryzen 7040 "Phoenix," except for a faster Ryzen AI NPU. While this is based on the same first-generation XDNA architecture, its NPU performance has been increased to 16 TOPS, compared to 10 TOPS of the NPU on the "Phoenix" silicon. AMD is taking a whole-of-silicon approach to AI acceleration, which includes not just the NPU, but also the "Zen 4" CPU cores that support the AVX-512 VNNI instruction set that's relevant to AI; and the iGPU based on the RDNA 3 graphics architecture, with each of its compute unit featuring two AI accelerators, components that make the SIMD cores crunch matrix math. The whole-of-silicon performance figures for "Phoenix" is 33 TOPS; while "Hawk Point" boasts of 39 TOPS. In benchmarks by AMD, "Hawk Point" is shown delivering a 40% improvement in vision models, and Llama 2, over the Ryzen 7040 "Phoenix" series.

Intel Core Ultra 7 155H iGPU Outperforms AMD Radeon 780M, Comes Close to Desktop Intel Arc A380

Intel is slowly preparing to launch its next-generation Meteor Lake mobile processor family, dropping the Core i brand name in favor of Core Ultra. Today, we are witnessing some early Geekbench v6 benchmarks with the latest leak of the Core Ultra 7 155H processor, boasting an integrated Arc GPU featuring 8 Xe-Cores—the complete configuration expected in the GPU tile. This tile is also projected to be a part of the more potent Core 9 Ultra 185H CPU. The Intel Core Ultra 7 155H processor has been benchmarked in the new ASUS Zenbook 14, which houses a 16-core and 22-thread hybrid CPU configuration capable of boosting up to 4.8 GHz. Paired with 32 GB of memory, the configuration was well equipped to supply CPU and GPU with sufficient memory space.

Perhaps the most interesting information from the submission was the OpenCL score of the GPU. Clocking in at 33948 points in Geekbench v6, the GPU is running over AMD's Radeon 780M GPU found in APU solutions like AMD Ryzen 9 7940HS and Ryzen 9 7940U, which scored 30585 and 27345 points in the same benchmark, respectively. The GPU tile is millimeters away from closing the gap between itself and the desktop Intel Arc A380 discrete GPU, which scored 37105 points for less than a 10% difference. The Xe-LPG GPU version is bringing some interesting performance points for the integrated GPU platform, which means that Intel's Meteor Lake SKUs will bring more performance/watt than ever.

Intel Lunar Lake-MX SoC with On-Package LPDDR5X Memory Detailed

With the reality of high performance Arm processors from Apple and Qualcomm threatening Intel's market share in the client computing space, Intel is working on learner more PCB-efficient client SoCs that can take the fight to them, while holding onto the foundations of x86. The first such form-factor of processors are dubbed -MX. These are essentially -U segment processors with memory on package, to minimize PCB footprint. Intel has fully integrated the PCH into the processor chip with "Meteor Lake," with PCH functions scattered across the SoC and I/O tiles of the processor. An SoC package with dimensions similar to those of -UP4 packages meant for ultrabooks, can now cram main memory, so the PCBs of next-generation notebooks can be further compacted.

Intel had recently shown Meteor Lake-MX packages to the press as a packaging technology demonstration in its Arizona facility. It's unclear whether this could release as actual products, but in a leaked company presentation, confirmed that its first commercial outing will be with Lunar Lake-MX. The current "Alder Lake-UP4" package measures 19 mm x 28.5 mm, and is a classic multi-chip module that combines a monolithic "Alder Lake" SoC die with a PCH die. The "Meteor Lake-UP4" package measures 19 mm x 23 mm, and is a chiplet-based processor, with a Foveros base tile that holds the Compute (CPU cores), Graphics (iGPU), SoC and I/O (platform core-logic) tiles. The "Lunar Lake-MX" package is slightly larger than its -UP4 predecessors, measuring 27 mm x 27.5 mm, but completely frees up space on the PCB for memory.

ASRock Begins Rolling Out AGESA 1.1.0.0 Firmware with Phoenix APU Support

ASRock began rolling out UEFI firmware updates for its Socket AM5 motherboards that encapsulate AMD AGESA 1.1.0.0 ComboAM5PI microcode. This would be the second release of AGESA to support AMD's upcoming Ryzen 7000G "Phoenix" and "Phoenix 2" desktop APUs that the company reportedly plans to launch later this year. The AGESA 1.1.0.0 microcode comes with the SMU version 76.72.0 for "Phoenix" and "Phoenix 2," and continues with version 84.79.223 for "Raphael" and "Raphael-X" processors.

Unlike several past generations of Ryzen branded desktop APUs that only had 2-3 processor models in the retail channel, AMD is reportedly planning a slightly bigger lineup of APUs for the Socket AM5 platform, consisting of Ryzen 3, Ryzen 5, and possibly Ryzen 7 processor models, and their Ryzen PRO variants. The Ryzen 3 and Ryzen 5 models are expected to be based on the "Phoenix 2" silicon that has a combination of two "Zen 4" and four "Zen 4c" CPU cores and an iGPU with 4 compute units; while it is rumored that at least one Ryzen 5 and Ryzen 7 processor model will be built on "Phoenix," which has up to eight "Zen 4" cores, and a large iGPU with up to 12 compute units. So far we haven't seen reports of AMD bringing Ryzen AI to the desktop platform.

AMD Introduces Ryzen 5 and Ryzen 3 Mobile Processors with "Zen 4c" Cores

AMD today launched its first client processors that feature the compact "Zen 4c" CPU cores, with the Ryzen 5 7545U and Ryzen 3 7440U mobile processors for thin-and-light notebooks. The "Zen 4c" CPU core is a compacted version of the "Zen 4" core without the subtraction of any hardware components, but rather a high density arrangement of them on the 4 nm silicon. A "Zen 4c" core is around 35% smaller in area on the die than a regular "Zen 4" core. Since none of its components is removed, the core features an identical IPC (single thread performance) to "Zen 4," as well as an identical ISA (instruction set). "Zen 4c" also supports SMT or 2 threads per core. The trade-off here is that "Zen 4c" cores are generally clocked lower than "Zen 4" cores, as they can operate at lower core voltages. This doesn't, however, make the "Zen 4c" comparable to an E-core by Intel's definition, these cores are still part of the same CPU clock speed band as the "Zen 4" cores, at least in the processors that's being launched today.

The Ryzen 5 7545U and Ryzen 3 7440U mobile processors formally debut the new 4 nm "Phoenix 2" monolithic silicon. This chip is AMD's first hybrid processor, in that it has a mixture of two regular "Zen 4" cores, and four compact "Zen 4c" cores. The six cores share an impressive 16 MB of L3 cache. All six cores feature 1 MB of dedicated L2 cache. There is no complex hardware-based scheduler involved, but a software based solution that's deployed by AMD's Chipset Software, which tells the Windows scheduler to see the "Zen 4" cores as UEFI CPPC "preferred cores," and prioritize traffic to them, as they can hold on to higher boost frequency bins. The "Phoenix 2" silicon inherits much of the on-die power-management feature-set from the "Phoenix" and "Rembrandt" chips, and so are capable of a high degree of power savings with underutilized CPU cores and iGPU compute units.

AMD Ryzen 7000G APU Series Includes Lower End Models Based on "Phoenix 2"

AMD is giving final touches to its Ryzen 7000G series desktop APUs that bring the 4 nm "Phoenix" monolithic processor silicon to the Socket AM5 desktop package. The star attraction with these processors is their large iGPU based on the latest RDNA3 graphics architecture, featuring up to 12 compute units worth 768 stream processors, and full DirectX 12 Ultimate feature-set support. These processors should be able to provide 720p to 1080p gaming with entry-medium settings, where you take take advantage of FSR for even better performance. At this point we don't know whether the Ryzen AI feature-set will make its way to the desktop platform. "Phoenix" features an 8-core/16-thread CPU based on the latest "Zen 4" microarchitecture.

An interesting development here is that not only is AMD bring the "Phoenix" silicon to the desktop platform, but the processor models highlighted in this leak reference the smaller "Phoenix 2" silicon. This chip is physically smaller, features a CPU with two "Zen 4" and four "Zen 4c" cores; and an iGPU that has no more than 4 compute units worth 256 stream processors. The OPN codes of at least three processor models surfaced on the web. These include the Ryzen 5 PRO 7500G (100-000001183-00), the Ryzen 5 7500G (100-00000931-00), and the Ryzen 3 7300G (100-000001187-00). No specs about these chips are known at this point. The PRO 7500G and regular 7500G are expected to feature the full 2+4 core configuration, while the 7300G could probably feature a 2+2 core configuration. If the company does plan a 7600G and 7700G, those would likely be based on "Phoenix" with 6 or 8 regular "Zen 4" cores.

Latest AMD AGESA Hints at Ryzen 7000G "Phoenix" Desktop APUs

AMD is preparing to launch its first APUs on the Socket AM5 desktop platform, with the Ryzen 7000G series. While the company has standardized integrated graphics with the Ryzen 7000 series, it does not consider the regular Ryzen 7000 series "Raphael" processors as APUs. AMD considers APUs to be processors with overpowered iGPUs that are fit for entry-mainstream PC gaming. As was expected for a while now, for the Ryzen 7000G series, AMD is tapping into its 4 nm "Phoenix" monolithic silicon, the same chip that powers the Ryzen 7040 series mobile processors. Proof of "Phoenix" making its way to desktop surfaced with CPU support lists for the latest AGESA SMUs (system management units) compiled by Reous, with the AGESA ComboAM5PI 1.0.8.0 listing support for "Raphael," as well as "Phoenix." Another piece of evidence was an ASUS B650 motherboard support page that listed a UEFI firmware update encapsulating 1.0.8.0, which references an "upcoming CPU."

Unlike "Raphael" and "Dragon Range," "Phoenix" is a monolithic processor die built on the TSMC 4 nm foundry node. Its CPU is based on the latest "Zen 4" microarchitecture, and features an 8-core/16-thread configuration, with 1 MB of L2 cache per core, and 16 MB of shared L3 cache. The star attraction here is the iGPU, which is based on the RDNA3 graphics architecture, meets the DirectX 12 Ultimate feature requirements, and is powered by 12 compute units worth 768 stream processors. Unlike "Raphael," the "Phoenix" silicon is known to feature an older PCI-Express Gen 4 root complex, with 24 lanes, so you get a PCI-Express 4.0 x16 PEG slot, one CPU-attached M.2 NVMe slot limited to Gen 4 x4, and a 4-lane chipset bus. "Phoenix" features a dual-channel (4 sub-channel) DDR5 memory controller, with native support for DDR5-5600. A big unknown with the Ryzen 7000G desktop APUs is whether they retain the Ryzen AI feature-set from the Ryzen 7040 series mobile processors.

Intel Innovation Swag Hints at Different Meteor Lake iGPU Configurations

Andreas Schilling, editor at Hardwareluxx, noticed some interesting looking Intel Meteor Lake-related merchandise very recently—last week's Innovation event served as a proper public unveiling of the next generation mobile processor series, scheduled to launch on December 14. Team Blue showcased their new advanced disaggregated chiplet design during a keynote presentation, but did not provide a comprehensive breakdown of upcoming SKUs and feature sets. A couple of clues were presented in plain sight (see below)—Schilling reckons that some tongue-in-cheek marketing was in effect: "Intel is leaking with its own swag. We know there will be different configurations of the compute, I/O and graphics tiles with Meteor Lake. The GPU will use 8 or 4 Xe cores it seems."

Intel has hyped up Meteor Lake's integrated GPU chiplet as having "performance parallelism and throughput, ideal for AI infused in media, 3D applications and the render pipeline." VideoCardz had this to say about the Alchemist-derived setup: "This integration of Xe-LPG architecture is expected to deliver a 2x performance boost compared to the existing Xe-LP architecture found in Raptor Lake. Intel put a lot of emphasis on supporting 10 W gaming with this architecture, potentially opening a new competing front versus AMD RDNA 3 in handheld." The Meteor Lake "swag" hints that at least two different configurations are in the works, with 8 or 4 Xe-Cores (as printed on the two pieces of merch). Intel's Meteor Lake SKU hierarchy could consist of models with varying levels of iGPU potency, since the chiplet design provides a great deal of flexibility.

Intel Arc GPU Graphics Drivers 101.4824 WHQL Released

Intel just released the latest version of Arc GPU Graphics Drivers. Version 101.4824 WHQL adds Game On optimization for "The Crew Motorfest" and "Mortal Kombat 1." Among the issues fixed with this release include flickering or display corruption noticed in Fortnite (DirectX 12), and erratic fan behavior on some Arc Graphics products. For Intel Core processor iGPUs, the drivers address a "Tactics Ogre Reborn" display flickering issue during the dialog sequences.

DOWNLOAD: Intel Arc GPU Graphics Drivers 101.4824 WHQL

Die-shot Suggests "Phoenix 2" is AMD's First Hybrid Processor

The 4 nm "Phoenix 2" monolithic APU silicon powering the lower end of AMD's Ryzen 7040-series mobile processors, could very well be the company's first hybrid core processor, even though the company doesn't advertise it as such. We first caught whiff of "Phoenix 2" back in July, when it was described as being a physically smaller chip than the regular "Phoenix." It was known to have just 6 CPU cores, and a smaller iGPU with 4 RDNA3 compute units; in comparison to the 8 CPU cores and 12 compute units of the "Phoenix" silicon. At the time a lack of 2 CPU cores and 8 CUs were known to be behind the significant reduction in die size from 178 mm² to 137 mm², but it turns out that there's a lot more to "Phoenix 2."

A die shot of "Phoenix 2" emerged on Chinese social media platform QQ, which reveals two distinct kinds of CPU cores. There are six cores in all, but two of them appear larger than the other four. The obvious inference here, is that the larger cores are "Zen 4," and the smaller ones are the compacted "Zen 4c." The "Zen 4c" core has the same core machinery as "Zen 4," albeit it is re-arranged to favor lower area on the die. The trade-off here is that the "Zen 4c" core operates at lower voltages and lower clock-speeds than the regular "Zen 4" cores. At the same clock speeds, both kinds of cores have an identical IPC. The two also have an identical ISA, so any software threads migrating between the cores will not encounter runtime errors. Unlike Intel Thread Director, AMD can use a less sophisticated software-based solution to ensure that the right kind of workload is allocated to the right kind of cores, and prevent undesirable migration between the two kinds of cores. Unlike the hardware-based Thread Director, AMD's solution can be continually updated.

Jon Peddie Research: Client CPU Shipments up 17% From Last Quarter

Jon Peddie Research reports the growth of the global PC client-based CPU units market reached 53.6 million units in Q2'23, up 17%, and iGPU shipments increased by 14% to 49 million units. Year over year, iGPUs declined -29%.

Integrated GPUs will have a compound annual growth rate of 2.5% during 2022-2026 and reach an installed base of 4.8 billion units at the end of the forecast period. Over the next five years, the penetration of iGPUs in the PC will grow to reach a level of 98%.

AMD "Strix Point" Zen 5 Monolithic Silicon has a 12-core CPU?

It looks like the monolithic silicon that succeeds "Phoenix," codenamed "Strix Point," will finally introduce an increase in CPU core counts for the thin-and-light and ultraportable mobile platforms. "Strix Point" is codename for the next-generation APU die being developed at AMD, which, according to a leaked MilkyWay@Home benchmark result, comes with a 12-core/24-thread CPU.

The silicon is identified by MilkyWay@Home with the OPN "AMD Eng Sample: 100-000000994-03_N," and CPU identification string "AuthenticAMD Family 26 Model 32 Stepping 0 -> B20F00." The "Strix Point" CPU could be the second time AMD has increased CPU core-counts per CCX. From "Zen 3" onward, the company increased the cores per CCX from 4 to 8, allowing a single "Zen 3" CCX on the "Cezanne" monolithic silicon to come with 8 cores. It's highly likely that with "Zen 5," the company is increasing the cores/CCX to 12, and that "Strix Point" has one of these CCXs.

Intel Meteor Lake iGPU Reportedly Boosts up to 2.2 GHz

Chinese tech tipster Golden Pig Upgrade has turned its attention to Intel's Meteor Lake processor series—they believe that hardware partners are putting qualification samples (QS) through the ringer. The short Bilibili social media post proposes that these laptop-oriented prototypes sport six high-performance Redwood Cove cores running at 4.80 GHz, eight energy-efficient Crestmont cores, as well as two low-power Crestmont cores. Apparently the unit's TDP can be adjusted—starting at 20 W, and going up to 65 W. Golden Pig Upgrade was also informed about a Core Ultra 9 model capable of hitting 5.0 GHz (or greater) maximum CPU clocks.

The qualification sample's integrated graphics processing unit is reportedly based on the Xe-LPG architecture—some experts reckon that this could offer performance (4.5 FP32 TFLOPS) comparable to Arc A380 or A370M discrete solutions. The sampled iGPU could feature up to 128 execution units (so equivalent to 1024 stream processors, as well as 8 Xe clusters)—insider sources allege that units can boost to a maximum of 2.2 GHz. It will be interesting to observe how this will stack up against AMD's Radeon 780M iGPU—which is theoretically in a similar ballpark (4.3 FP32 TFLOPS).

Intel Developing Efficient Solution for Path Tracing on Integrated GPUs

Intel's software engineers are working on path-traced light simulation and conducting neural graphics research, as documented in a recent company news article, with an ambition to create a more efficient solution for integrated graphics cards. The company's Graphics Research Organization is set to present their path-traced optimizations at SIGGRAPH 2023. Their papers have been showcased at recent EGSR and HPG events. The team is aiming to get iGPUs running path-tracing in real time, by reducing the number of calculations required to simulate light bounces.

The article covers three different techniques, all designed to improve GPU performance: "Across the process of path tracing, the research presented in these papers demonstrates improvements in efficiency in path tracing's main building blocks, namely ray tracing, shading, and sampling. These are important components to make photorealistic rendering with path tracing available on more affordable GPUs, such as Intel Arc GPUs, and a step toward real-time performance on integrated GPUs." Although there is an emphasis on in-house products in the article, Intel's "open source-first mindset" hints that their R&D could be shared with others—NVIDIA and AMD are likely still struggling to make ray tracing practical on their modest graphics card models.

AMD Ryzen 5 7500F Desktop Processor Surfaces, Could this be Phoenix-2 on AM5?

A screenshot from Puget Systems benchmark database reveals a new upcoming desktop processor model by AMD, the Ryzen 5 7500F. The screenshot details the 7500F as a 6-core processor, and the machine features an ASUS ROG Strix X670E-F Gaming motherboard, along with an RTX 4080 graphics card. At this point it's hard to tell what the "F" brand extension means in AMD nomenclature. On Intel, it denotes a lack of integrated graphics.

There are two possible theories on what the 7500F could be. One holds that it's a down-rated "Raphael" MCM with a disabled iGPU; while the other holds that it could be based on the 4 nm Phoenix-2 monolithic silicon. Detailed in an older article, the Phoenix-2 is a 137 mm² monolithic silicon that physically features no more than 6 "Zen 4" CPU cores, and an iGPU with just 4 RDNA 3 compute units, besides I/O that's identical to that of the regular 178 mm² 8-core/12-CU Phoenix silicon. Phoenix-2 on AM5 might just end up with a lower bill of materials than a single-CCD "Raphael" MCM.

Update 06:13 UTC: A Korean retailer has posted the first picture of the Ryzen 5 7500F in the flesh. They claim a street price of around $170-180 (KRW equivalent), and availability slated for July 7.

MediaTek Could Integrate NVIDIA GPU Tech into Upcoming SoC

MediaTek is rumored to have partnered up with NVIDIA in a new joint effort to create graphically powerful mobile chipsets. DigiTimes Asia reports that the two fabless companies are collaborating on a flagship-level smartphone SoC that could arrive in early 2024. MediaTek is hoping that this tech union will help advance its application processors with AI enhancements and greater gaming functionalities. Insider sources also claim that the partnership extends to the development of WOA (Windows on Arm) platform products for notebook applications.

DigiTimes believes that NVIDIA is seeking new market scope - outside of its normal staple of gaming and enterprise GPUs - opportunities within the smartphone and notebook market are part of an overall expansion strategy, including the teaming up with MediaTek. Arch rival AMD has been working with Samsung for a number of years on RDNA-based "Xclipse" iGPUs, as featured in several existing and upcoming flagship Exynos mobile chipsets, and Team Green is seemingly interested in doing something similar. MediaTek is keen to expand its processor presence in the notebook world - its current offerings only target the entry-level segment - and the alliance with NVIDIA could result in forthcoming mid-range and high-end WOA platform products.

AMD Could be Resurrecting Ryzen 3000G APU Series

AMD is reported to be reissuing its old Zen+ (12 nm) tech in order to meet demand for cheaper, lower-end systems in China, according to information released by Board Channels this week. The insider source claims that a new production order has been placed for Ryzen 3000G series APUs (requesting up to 30,000 units) and these processors are likely to be sold as part of hardware bundles with (similar vintage) low-end AM4-based motherboards - for example the B450 and A320 series, these older boards are still popular budget choices in China and readily available. The leak does not mention whether AMD is choosing to issue completely new hardware or if it is simply reproducing its 2019-era SKUs.

AMD released two Ryzen 3000G models back in 2019 - the 3400G and 3200G, both are quad-core Picasso APUs although the latter is lacking in simultaneous multithreading. It is not clear whether the super low budget AMD Athlon 3000G model will be included as part of the alleged 30K unit order. The 3000G series' onboard iGPUs (based on AMD's first generation Vega architecture) are likely preferred by the budget-conscious buyer since a discrete graphics card is not an essential part of builds intended for an office setting or a simple/functional home computer setup.

Intel Arc Battlemage and Celestial Graphics Architectures Teased by Employees

Intel Graphics employees inadvertently revealed that the company's Xe2 "Battlemage" graphics architecture is being designed for the 4 nm silicon fabrication node, which would give Intel's GPU designers a leap in transistor density and power headroom, given that TSMC 4 nm is an EUV node compared to the current 6 nm DUV node the company builds its Arc "Alchemist" GPUs on. The leak also seems to confirm that its succeeding "Celestial" graphics architecture is being designed for 3 nm. An enthusiast named gamma0burst sifted through public profiles of several Intel employees, and scored these details in their professional profile pages.

We are almost certain that Xe2 "Battlemage" is going to be built on the TSMC 4 nm node, and to a slightly lesser degree, about Xe3 "Celestial" being designed for TSMC's 3 nm N3X node. Intel roadmaps pin the debut of "Battlemage" to a 2023-2024 timeline, although this could also be a reference to the iGPU of the upcoming Core "Meteor Lake" processors that debut in the second half of 2023. Intel is highly likely to deliver "Meteor Lake" within its 2H-2023 timeline, which would mean that the mention of "2024" in the graphics technology roadmap could mean that discrete GPUs based on "Battlemage" only arrive next year.

AMD Ryzen 7040HS and 7040H "Phoenix" Laptop CPUs Get Tested

AMD is late in releasing its Phoenix Zen 4 lineup of mobile APUs - the original April launch has been missed, and laptops bearing Ryzen 7000HS & H-series are expected to arrive at some point this month. Preview hardware has made its way into the hands of testers, and one particular outlet - Golden Pig Upgrade, a content creator on the Chinese Bilibili video site - has performed benchmark tests. He seems to be the first reviewer to get hands-on time with AMD Ryzen 7040 Phoenix APUs, and his findings point to class leading performance results in terms of graphical capabilities - the 7840HS (packing a Radeon 780M RDNA3 iGPU) is compared to the Rembrandt-based 7735H, as well as a pair of Intel Raptor Lake CPUs - the 13700H and 13500H models.

AMD's newest Phoenix APU is the group leader in GPU performance stakes, but the jump up from the last-gen Rembrandt (RDNA2 iGPU) chip is not all that significant. VideoCardz reckons that the Radeon 780M integrated GPU is roughly equivalent to an NVIDIA GeForce MX550 dGPU and not far off from a GeForce GTX 1650 Max-Q graphics card (in terms of benchmark performance). According to AMD's internal documentation the RDNA 3 core architecture utilized in Phoenix APUs is referred to as "2.5" so this perhaps explains why the 780M is not doing laps around its older silbing(s).

Intel to Introduce Core Ultra Brand Extension with "Meteor Lake," iGPU Packs 128 EU

Intel is planning a major change in its client processor brand extensions with its next-generation mobile processors codenamed "Meteor Lake." The company is working to introduce the new Core Ultra brand extensions, where "Ultra" replaces the "i" in extensions such as i3, i5, i7, and i9 in some processor models. An example of such a brand extension would be the "Core Ultra 5 1003H." Ashes of the Singularity benchmark leaks of the processors surfaced on social media.

The benchmark also detects 128 EU (1,024 unified shaders) for the iGPU powering "Meteor Lake." If true, this iGPU could offer performance that's in the league of an Arc A380 discrete GPU, with some performance lost to the shared memory setup compared to the A380 with its dedicated graphics memory. The iGPU clock speed is detected to be 2.10 GHz, and having 4 MB of L2 cache, the last-level cache local to the Graphics Tile. The detection string for the iGPU as reported by its OpenCL ICD reads "Intel(R) Graphics i gfx-driver-ci-master-13736 DCH RI (1024S 128C SM3.0 2.1GHz, 4MB L2, 12.7GB)."

ASUS ROG Ally Powered by AMD Ryzen Z1 Extreme Priced at $700

ASUS's sensational handheld game console, the ROG Ally, will be priced at $699.99 for the model powered by the top AMD Ryzen Z1 Extreme processor, according to a leak by SnoopyTech. This top model will feature a 7-inch Full HD screen with 120 Hz refresh-rate, and Dolby Atmos-capable audio. Under the hood, the Ryzen Z1 is based on the 4 nm "Phoenix" silicon, featuring an 8-core/16-thread "Zen 4" CPU, and its full Navi3 iGPU based on the RDNA3 graphics architecture, with 12 CU (768 stream processors). This chip is wired to 16 GB of LPDDR5 memory, and a 512 GB NVMe SSD.

ASUS has a cheaper model of the ROG Ally designed for cloud gaming and casual gaming, powered by the Ryzen Z1 (non-Extreme). The non-Extreme Z1 rocks a 6-core/12-thread "Zen 4" CPU, but a heavily cut down iGPU with just 4 CU (256 stream processors), which are plenty for the intended use-cases. ASUS could price this much lower than the top model, with speculations pointing to $499.

ASUS ROG Ally Powered by AMD Ryzen Z1 Extreme Clocks 71 FPS in DOOM Eternal

ASUS ROG Ally, the company's handheld game console that started out as an April Fool's joke before being announced as a serious product development and ASUS's answer to the Steam Deck, is a lean-mean gaming machine powered by the AMD Ryzen Z1 Extreme processor. Announced earlier today, the Z1 Extreme is a highly power-optimized version of the 4 nm "Phoenix" silicon that packs an 8-core/16-thread CPU based on the "Zen 4" microarchitecture, along with its full-config iGPU based on the latest RDNA3 graphics architecture, with 12 CU (768 stream processors), and an LPDDR5 memory interface.

On the ROG Ally, the Z1 Extreme is configured with a 1.70 GHz CPU clock-speed, along with a 2.10 GHz iGPU engine clock. Multiplayer Italy went hands-on with the ROG Ally, and showed off a gameplay of "DOOM Eternal," where the ROG Ally pumps out 71 FPS, with an SoC power-draw of 25.7 W, and an SoC temperature of just 56°C. ASUS and AMD are expected to give the ROG Ally the full spectrum of software-level optimizations suitable for the device, such as dynamic resolution (Radeon Boost), which should hold frame-rates above 60 FPS at all times.

"Adamantine" L4 Cache Confirmed on Intel "Meteor Lake," Acts as a Passive Interposer

We've known from a recent report that "Meteor Lake" introduces an L4 cache, and now we are learning that it is codenamed "Adamantine," and serves functions resembling that of a passive interposer. Intel's upcoming "Meteor Lake" microarchitecture will power the company's first disaggregated processor for the client segment.

A disaggregated processor is different from an MCM (such as "Clarkdale"), since finer components that make up the processor that otherwise can't exist on their own packages without extreme latency, are made to share a single package via a high-speed interconnect. This disaggregation is purely for economic reasons, so the company needn't use the latest (and most expensive) foundry node for the entire processor, but ration it to the specific components that benefit the most from it. Unlike AMD client processors that disaggregate the CPU cores and the remaining processor I/O into two kinds of chiplets, Intel "Meteor Lake" will see the breaking up of not just CPU cores (compute tile), but also the iGPU on its own tile, besides the platform I/O on separate tiles still.
Return to Keyword Browsing
Dec 18th, 2024 01:10 EST change timezone

New Forum Posts

Popular Reviews

Controversial News Posts