News Posts matching #litography

Return to Keyword Browsing

US Targets ASML With $1B Lithography Center in Albany, New York

Today, the Department of Commerce and Natcast, the operator of the National Semiconductor Technology Center (NSTC), announced the expected location for the first CHIPS for America research and development (R&D) flagship facility. The CHIPS for America Extreme Ultraviolet (EUV) Accelerator, an NSTC facility (EUV Accelerator), is expected to operate within NY CREATES' Albany NanoTech Complex in Albany, New York, supported by a proposed federal investment of an estimated $825 million. The EUV Accelerator will focus on advancing state of the art EUV technology and the R&D that relies on it.

As a key part of President Biden's Investing in America agenda, CHIPS for America is driven by the growing need to bolster the U.S. semiconductor supply chain, accelerate U.S. leading-edge R&D, and create good quality jobs around the country. This proposed facility will bring together NSTC members from across the ecosystem to accelerate semiconductor R&D and innovation by providing NSTC members access to technologies, capabilities, and critical resources.

China Gobbling Up Supply of Used Semiconductor Manufacturing Machines

As the tensions between China and the US seem to have come to stay for the foreseeable future, Chinese companies are now opting to resort to older technologies so as to shore up their semiconductor manufacturing capability and reduce dependency from US-based imports. With several companies feeling the tight rope of US-imposed sanctions on their ability to purchase critical supplies (which brought even giant Huawei to its proverbial knees), it seems like a safe bet that China doesn't really care to be on the cutting edge for all but the most mission-critical applications. This happens at a time when the world is still reeling from general semiconductor shortages (some 30% below demand levels). This results in used semiconductor manufacturing equipment - which according to some sources, was "worthless several years ago" - to now be flying from storage warehouses and directly onto factory floors as fast humanly possible. And sometimes, that equipment is acquired for a cool $1 million.

The litography equipment being bought-up (apparently, 90% of the available supply is headed to China) mostly churns out 200 mm wafers, as opposed to today's most modern processes' 300 mm. This means that it's not only the wafer etching machines that are required, but also all the other peripheral equipment that is indispensable to the manufacturing process, such as etching and cleansing machines. This has prompted certain companies, such as Canon, to re-release litography equipment for 200 mm processes - nine years after their last offering was put to sale. This could actually be a way to supplement existing semiconductor requirements, as not everything has to be in the cutting edge of semiconductor capabilities - the old "satisficing" adage could indeed prove a good solution to the increasing demand for semiconductors.

DigiTimes: TSMC Kicking Off Development of 2nm Process Node

A report via DigiTimes places TSMC as having announced to its investors that exploratory studies and R&D for the development of the 2 nm process node have commenced. As today's leading semiconductor fabrication company, TSMC doesn't seem to be one resting on its laurels. Their 7 nm process and derivatives have already achieved a 30% weight on the company's semiconductor orders, and their 5 nm node (which will include EUV litography) is set to hit HVM (High Volume Manufacturing) in Q2 of this year. Apart from that, not much more is known on 2 nm.

After 5 nm, which is expected to boats of an 84-87% transistor density gain over the current 7nm node, the plans are to go 3nm, with TSMC expecting that node to hit mass production come 2022. Interestingly, TSMC is planning to still use FinFET technology for its 3 nm manufacturing node, though in a new GAAFET (gate-all-around field-effect transistor) technology. TSMC's plans to deploy FinFET in under 5nm manufacturing is something that many industry analysts and specialist thought extremely difficult to achieve, with expectations for these sub-5nm nodes to require more exotic materials and transistor designs than TSMC's apparent plans

Samsung Details New Foundry Offerings at 14nm (LPU) and 10nm (LPU)

In an announcement that's sure to stir the foundry gods, Samsung Electronics, a world leader in advanced semiconductor technology, announced today that it is expanding its advanced foundry process technology offerings with the fourth-generation 14-nanometer (nm) process (14LPU) and the third-generation 10nm process (10LPU). The announcement comes as Samsung increases investment so as to meet the requirements of next generation products, ranging from mobile and consumer electronics (Snapdragon 830 and Samsung's own Exynos 8895 come to mind) to data centers and automotives.

Ben Suh, Senior Vice President of foundry marketing at Samsung Electronics, issued the following statement: "After we announced the industry's first 10nm mass production in mid-October, we have now also expanded our lineup with new foundry offerings, 14LPU and 10LPU. Samsung is very confident with our technology definitions that provide design advantages on an aggressive process with manufacturability considerations. We have received tremendous positive market feedback and are looking forward to expanding our leadership in the advanced process technology space."
Return to Keyword Browsing
Jan 22nd, 2025 06:54 EST change timezone

New Forum Posts

Popular Reviews

Controversial News Posts