News Posts matching #quantum computing

Return to Keyword Browsing

Welinq Debuts First Commercial Quantum Memory for Quantum Data Centers

Welinq, a leader in quantum networking technology, has launched the first commercial quantum memory designed specifically for quantum data centers with world-record performance. Quantum computing is reaching a turning point: with more than 100 individual quantum computers deployed in dedicated infrastructures, the next challenge is networking them into scalable, high-performance architectures.

Just as classical data centers rely on distributed computing and high-speed interconnects, the future of quantum computing depends on optical networking and resource sharing between quantum processors. Welinq's quantum memory acts as the backbone of this infrastructure, making it possible to link quantum processors into powerful, scalable networks.

NVIDIA to Build Accelerated Quantum Computing Research Center

NVIDIA today announced it is building a Boston-based research center to provide cutting-edge technologies to advance quantum computing. The NVIDIA Accelerated Quantum Research Center, or NVAQC, will integrate leading quantum hardware with AI supercomputers, enabling what is known as accelerated quantum supercomputing. The NVAQC will help solve quantum computing's most challenging problems, ranging from qubit noise to transforming experimental quantum processors into practical devices.

Leading quantum computing innovators, including Quantinuum, Quantum Machines and QuEra Computing, will tap into the NVAQC to drive advancements through collaborations with researchers from leading universities, such as the Harvard Quantum Initiative in Science and Engineering (HQI) and the Engineering Quantum Systems (EQuS) group at the Massachusetts Institute of Technology (MIT).

China Dedicates $55 Billion for Semiconductor, AI, and Quantum Computing Development in 2025

China's Ministry of Finance has allocated $55 billion (¥398.12 billion) for science and technology funding in 2025, marking a 10% increase from the previous year's $50 billion (¥361.9 billion). This expenditure now stands as the nation's third-largest budget item, following only national defense and debt interest payments. The 2024 allocation achieved a 97.6% implementation rate, indicating effective deployment of resources in the technology sector. The funding prioritizes initiatives under the "Science and Technology Innovation 2030" program, with significant investments targeting semiconductors, artificial intelligence, and quantum computing research. Rather than stimulating immediate breakthroughs, the incremental funding increase aims to strengthen existing projects and enhance technological self-reliance amid global competition.

This strategy shows some fiscal constraints imposed by China's economic slowdown while maintaining the country's long-term technological objectives. Supplementary measures bolster direct R&D investment, including enhanced support for fundamental research and specialized financing mechanisms for technology-focused enterprises. Tax reductions and targeted subsidies form part of a comprehensive policy framework designed to foster domestic innovation capabilities. While the funding increase shows commitment to technological advancement, effective project management and efficient resource allocation will be critical success factors, mainly as China competes more globally. Perhaps the most important milestone for this aid package will be supporting the development of advanced lithography tools to make sure that domestic companies can manufacture cutting-edge silicon.

Cineca to House Italy's Most Powerful Quantum Computer IQM Radiance 54

Italian supercomputing centre Cineca today announced an agreement with IQM Quantum Computers, a global leader in superconducting quantum computers, to deliver the most powerful quantum computer in Italy.

IQM Radiance quantum computer, powered by IQM's 54-qubit quantum processing unit (QPU), will be installed in the fourth quarter of 2025. The quantum computer will be integrated into Leonardo, which is one of the world's fastest supercomputers. This will mark a major technology and innovation milestone for Italy and the larger quantum ecosystem.

Equal1 Launches Bell-1: The First Quantum System Purpose-Built for the HPC Era

Equal1 today unveils Bell-1, the first quantum system purpose-built for the HPC era. Unlike first-generation quantum computers that demand dedicated rooms, infrastructure, and complex cooling systems, Bell-1 is designed for direct deployment in HPC-class environments. As a rack-mountable quantum node, it integrates directly alongside classical compute—as compact as a GPU server, yet exponentially more powerful for the world's hardest problems. Bell-1 is engineered to eliminate the traditional barriers of cost, infrastructure, and complexity, setting a new benchmark for scalable quantum computing integration.

Bell-1 rewrites the rule book. While today's quantum computers demand specialized infrastructure, Bell-1 is a silicon-powered quantum computer that integrates seamlessly into existing HPC environments. Simply rack it, plug it in, and unlock quantum capabilities wherever your classical computers already operate. No new cooling systems. No extraordinary power demands. Just quantum computing that works in the real world, as easy to deploy as a high-end GPU server. It plugs into a standard power socket, operates at just 1600 W, and delivers on-demand quantum computing for computationally intensive workloads.

Scientists Cast Doubt on Microsoft's Quantum "Breakthrough" with Majorana 1 Chip

Microsoft launched its Majorana 1 chip—the world's first quantum processor powered by a Topological Core architecture—last month. The company's debuting of its Majorana design was celebrated as a significant milestone—in 2023, an ambitious roadmap was published by Microsoft's research department. At the time, a tall Majorana particle-based task was set: the building of a proprietary quantum supercomputer within a decade. Returning to the present day; outside parties have criticized Microsoft's February announcements. The Register published an investigative piece earlier today, based on quotes from key players specializing in the field of Quantum studies. Many propose a theoretical existence of Majorana particles, while Microsoft R&D employees have claimed detection and utilization. The Register referred back to recent history: "(Microsoft) made big claims about Majorana particles before, but it didn't end well: in 2021 Redmond's researchers retracted a 2018 paper in which they claimed to have detected the particles."

As pointed out by Microsoft researcher Chetan Nayak; their latest paper was actually authored last March 2024, but only made public in recent weeks. Further details of progress are expected next week, at the American Physical Society (APS) 2025 Joint March Meeting. The Register has compiled quotes from vocal critics; starting with Henry Legg—a lecturer in theoretical physics at the University of St Andrews, Scotland. The noted scholar believes—as divulged in a scientific online comment—that Microsoft's claimed Quantum breakthrough: "is not reliable and must be revisited." Similarly, collaborators from Germany's Forschungszentrum Jülich institute and the University of Pittsburgh, USA released a joint video statement. (Respectively) Experimental physicist Vincent Mourik and by Professor Sergey Frolov outlined: "distractions caused by unreliable scientific claims from Microsoft Quantum."

VTT and IQM Launch First 50-Qubit Quantum Computer Developed in Europe

VTT Technical Research Centre of Finland and IQM Quantum Computers, one of the global leaders in superconducting quantum computers, have completed and launched Europe's first 50-qubit superconducting quantum computer, now open to researchers and companies through the VTT QX quantum computing service.

The new 50-qubit quantum computer further strengthens Finland's position among the countries capable of developing and investing in quantum computing. Finland first announced its efforts in quantum computing development back in November 2020 with a total budget of EUR 20.7 million from the Finnish government to develop a 50-qubit quantum computer.

Amazon Web Services Announces New Quantum Computing Chip

Today, Amazon Web Services (AWS) announced Ocelot, a new quantum computing chip that can reduce the costs of implementing quantum error correction by up to 90%, compared to current approaches. Developed by the team at the AWS Center for Quantum Computing at the California Institute of Technology, Ocelot represents a breakthrough in the pursuit to build fault-tolerant quantum computers capable of solving problems of commercial and scientific importance that are beyond the reach of today's conventional computers.

AWS used a novel design for Ocelot's architecture, building error correction in from the ground up and using the 'cat qubit'. Cat qubits-named after the famous Schrödinger's cat thought experiment-intrinsically suppress certain forms of errors, reducing the resources required for quantum error correction. Through this new approach with Ocelot, AWS researchers have, for the first time, combined cat qubit technology and additional quantum error correction components onto a microchip that can be manufactured in a scalable fashion using processes borrowed from the microelectronics industry.

Microsoft Presents Majorana 1: First Quantum Processor to Pave the Way to Million-Qubit Systems

Microsoft has launched Majorana 1, the world's first quantum processor powered by a Topological Core architecture, marking a significant step toward fault-tolerant, utility-scale quantum computing. The chip leverages tetron qubits—topological qubits built on Majorana zero modes (MZMs)—to achieve stability and scalability, with a roadmap to one million qubits, a threshold critical for solving industrial challenges like microplastic degradation and self-healing materials. At the heart of Majorana 1 lies a superconductor-semiconductor heterostructure combining indium arsenide and aluminium. This "topoconductor" material enables precise control of MZMs, exotic quantum particles that encode information non-locally, inherently resisting noise and errors. The design, detailed in the latest paper, arranges MZMs in H-shaped nanowires, forming two-sided tetrons that suppress errors exponentially via three factors: topological gap-to-temperature ratio, wire length-to-coherence length, and high-fidelity microwave readout. Microsoft claims that thopoconductor can "create an entirely new state of matter - not a solid, liquid or gas but a topological state."

Unlike conventional qubits requiring analog tuning, Microsoft's architecture uses digital voltage pulses for error-resistant, measurement-based operations. This approach simplifies scaling, with the current chip housing eight tetrons and supporting protocols for quantum error detection, such as the Hastings-Haah Floquet codes and ladder codes outlined in Microsoft's technical roadmap. These codes rely on single- and two-qubit Pauli measurements, native to tetrons, to detect and correct errors without complex gate sequences. DARPA's US2QC program validated that Microsoft's topology-first strategy minimizes overhead, enabling a future million-qubit system compact enough to fit in Azure datacenters. The chip's quantum capacitance measurement system detects parity shifts in microseconds, achieving a signal-to-noise ratio critical for fault tolerance. Applications span designing catalysts to break down pollutants, optimizing enzymes for agriculture, and simulating novel materials. Microsoft aims to merge quantum, AI, and high-performance computing into Azure, accelerating discoveries once deemed decades away. Majorana 1 proves that topological qubits—once a high-risk bet—are now the cornerstone of scalable quantum systems.

NVIDIA Schedules "Quantum Day" Event - March 20 at GTC 2025

Quantum computing is one of the most exciting areas in computer science, promising progress in accelerated computing beyond what's considered possible today. It's expected that the technology will tackle myriad problems that were once deemed impractical or even impossible to solve. Quantum computing promises huge leaps forward for fields spanning drug discovery and materials development to financial forecasting.

But just as exciting as quantum computing's future are the breakthroughs already being made today in quantum hardware, error correction and algorithms. NVIDIA is celebrating and exploring this remarkable progress in quantum computing by announcing its first Quantum Day at GTC 2025 on Thursday, March 20. This new focus area brings together leading experts for a comprehensive and balanced perspective on what businesses should expect from quantum computing in the coming decades—mapping the path toward useful quantum applications.

Rigetti Computing Launches 84-Qubit Ankaa-3 Quantum Computer

Rigetti Computing, Inc., a pioneer in full-stack quantum-classical computing, announced today the public launch of its 84-qubit Ankaa-3 system. Ankaa-3 is Rigetti's newest flagship quantum computer featuring an extensive hardware redesign that enables superior performance. Rigetti also celebrates major two-qubit gate fidelity milestones with Ankaa-3: successfully halving error rates in 2024 to achieve a median 99.0% iSWAP gate fidelity, as well as demonstrating 99.5% median fidelity fSim gates.

Ankaa-3 is now available to its partners via the Rigetti Quantum Cloud Services platform (QCS)and will be coming to Amazon Braket and Microsoft Azure in the first quarter of 2025. Users will be able to operate these higher fidelity and universal iSWAP gates for a wide range of algorithmic research, with a median gate time of 72 nanoseconds. The faster (median 56 nanoseconds), more specialized fSim gates are useful for specific algorithms such as random circuit sampling, as recently demonstrated on Google's Willow system.

Quobly Announces Key Milestone for Fault-tolerant Quantum Computing

Quobly, a leading French quantum computing startup, has reported that FD-SOI technology can serve as a scalable platform for commercial quantum computing, leveraging traditional semiconductor manufacturing fabs and CEA-Leti's R&D pilot line.

The semiconductor industry has played a pivotal role in enabling classical computers to scale at cost; it has the same transformative potential for quantum computers, making them commercially scalable and cost competitive. Silicon spin qubits are excellent for achieving fault-tolerant, large-scale quantum computing, registering clock speeds in the µsec range, fidelity above 99% for one and two-qubit gate operations and incomparably small unit cell sizes (in the hundredths of 100 nm²).

IonQ Unveils Its First Quantum Computer in Europe, Online Now at a Record #AQ36

IonQ, a leader in the quantum computing and networking industry, today announced the delivery of IonQ Forte Enterprise to its first European Innovation Center at the uptownBasel campus in Arlesheim, Switzerland. Achieved in partnership with QuantumBasel, this major milestone marks the first datacenter-ready quantum computer IonQ has delivered that will operate outside the United States and the first quantum system for commercial use in Switzerland.

Forte Enterprise is now online servicing compute jobs while performing at a record algorithmic qubit count of #AQ36, which is significantly more powerful than the promised #AQ35. With each additional #AQ, the useful computational space for running quantum algorithms doubles. A system with #AQ36 is capable of considering more than 68 billion different possibilities simultaneously. With this milestone, IonQ once again leads the industry in delivering production-ready systems to customers.

Taiwan Semiconductor Research Institute Selects IQM Spark Quantum Computer to Boost Research

The Taiwan Semiconductor Research Institute (TSRI) under the National Applied Research Laboratories today announces the procurement of its first full-stack quantum computer from IQM Quantum Computers (IQM), a global leader in designing, building, and selling superconducting quantum computers. The delivery and installation of the system at TSRI's premises will take place in the second quarter of 2025.

Both TSRI and IQM aim to accelerate quantum computing development in Taiwan, and the acquisition of IQM Spark, a 5-qubit quantum computer with high fidelity, will help TSRI utilize the system for educational and research purposes.

Infineon and Quantinuum Partner to Advance Quantum Computing

Infineon Technologies AG, a global leader in semiconductor solutions, and Quantinuum, a global leader in integrated, full-stack quantum computing, today announced a strategic partnership to develop the future generation of ion traps. This partnership will drive the acceleration of quantum computing and enable progress in fields such as generative chemistry, material science, and artificial intelligence.

"We are thrilled to partner with Quantinuum, a leader in quantum computing, to push the boundaries of quantum computing and generate larger, more powerful machines that solve meaningful real-life problems," said Richard Kuncic, Senior Vice President and General Manager Power Systems at Infineon Technologies. "This collaboration brings together Infineon's state-of-the-art knowledge in process development, fabrication, and quantum processing unit (QPU) technology with Quantinuum's cutting-edge ion-trap design expertise and experience with operating high-performance commercial quantum computers."

IBM Launches Its Most Advanced Quantum Computers, Fueling New Scientific Value and Progress towards Quantum Advantage

Today at its inaugural IBM Quantum Developer Conference, IBM announced quantum hardware and software advancements to execute complex algorithms on IBM quantum computers with record levels of scale, speed, and accuracy.

IBM Quantum Heron, the company's most performant quantum processor to-date and available in IBM's global quantum data centers, can now leverage Qiskit to accurately run certain classes of quantum circuits with up to 5,000 two-qubit gate operations. Users can now use these capabilities to expand explorations in how quantum computers can tackle scientific problems across materials, chemistry, life sciences, high-energy physics, and more.

IQM Selected to Deliver Two Advanced Quantum Computers as Part of Euro-Q-Exa Hybrid System

The EuroHPC Joint Undertaking (EuroHPC JU) has signed a purchase agreement with IQM Quantum Computers (IQM), a global leader in designing, building, and selling superconducting quantum computers. Under the agreement, IQM will deliver two advanced Radiance quantum systems of 54 qubits and 150 qubits in the second half of 2025 and by the end of 2026, respectively.

The two distinct systems, featuring high-quality qubits and industry-leading fidelities will play a pivotal role in executing quantum algorithms across a range of application domains.

First IBM Quantum Data Center in Europe Opens; Will Include IBM's Most Performant Quantum Systems

Alongside German Chancellor Olaf Scholz, senior European government officials and European-based global enterprises, IBM (NYSE: IBM) today unveiled the first IBM Quantum Data Center located outside of the United States. It is the company's second quantum data center in the world and marks a significant expansion of its fleet of advanced, utility-scale quantum systems available to global users via the cloud.

Now online in Ehningen, Germany, Europe's first IBM Quantum Data Center includes two new utility-scale, IBM Quantum Eagle-based systems, and will soon feature a new IBM Quantum Heron-based system. These systems are capable of performing computations beyond the brute-force simulation capabilities of classical computers.

IBM Expands Quantum Data Center in Poughkeepsie, New York to Advance Algorithm Discovery Globally

IBM announced today the completion of its latest expansion of the IBM Quantum Data Center in Poughkeepsie, New York, which operates the highest number of available utility-scale quantum computers at a single location in the world. These systems are a part of the more than a dozen quantum computers offered to global clients via the IBM cloud.

To advance its mission of bringing useful quantum computing to the world, IBM has heavily invested in deploying advanced quantum hardware architectures. First introduced late last year, the IBM Quantum Heron processor has now been deployed in IBM's global Quantum Data Center in Poughkeepsie.

Imec Develops Ultra-Low Noise Si MOS Quantum Dots Using 300mm CMOS Technology

Imec, a world-leading research and innovation hub in nanoelectronics and digital technologies, today announced the demonstration of high quality 300 mm-Si-based quantum dot spin qubit processing with devices resulting in a statistically relevant, average charge noise of 0.6µeV/√ Hz at 1 Hz. In view of noise performance, the values obtained are the lowest charge noise values achieved on a 300 mm fab-compatible platform.

Such low noise values enable high-fidelity qubit control, as reducing the noise is critical for maintaining quantum coherence and high fidelity control. By demonstrating those values, repeatedly and reproducibly, on a 300 mm Si MOS quantum dot process, this work makes large-scale quantum computers based on Si quantum dots a realistic possibility.

Quantinuum Launches Industry-First, Trapped-Ion 56-Qubit Quantum Computer, Breaking Key Benchmark Record

Quantinuum, the world's largest integrated quantum computing company, today unveiled the industry's first quantum computer with 56 trapped-ion qubits. H2-1 has further enhanced its market-leading fidelity and is now impossible for a classical computer to fully simulate.

A joint team from Quantinuum and JPMorgan Chase ran a Random Circuit Sampling (RCS) algorithm, achieving a remarkable 100x improvement over prior industry results from Google in 2019 and setting a new world record for the cross entropy benchmark. H2-1's combination of scale and hardware fidelity makes it difficult for today's most powerful supercomputers and other quantum computing architectures to match this result.

NVIDIA Accelerates Quantum Computing Centers Worldwide With CUDA-Q Platform

NVIDIA today announced that it will accelerate quantum computing efforts at national supercomputing centers around the world with the open-source NVIDIA CUDA-Q platform. Supercomputing sites in Germany, Japan and Poland will use the platform to power the quantum processing units (QPUs) inside their NVIDIA-accelerated high-performance computing systems.

QPUs are the brains of quantum computers that use the behavior of particles like electrons or photons to calculate differently than traditional processors, with the potential to make certain types of calculations faster. Germany's Jülich Supercomputing Centre (JSC) at Forschungszentrum Jülich is installing a QPU built by IQM Quantum Computers as a complement to its JUPITER supercomputer, supercharged by the NVIDIA GH200 Grace Hopper Superchip. The ABCI-Q supercomputer, located at the National Institute of Advanced Industrial Science and Technology (AIST) in Japan, is designed to advance the nation's quantum computing initiative. Powered by the NVIDIA Hopper architecture, the system will add a QPU from QuEra. Poland's Poznan Supercomputing and Networking Center (PSNC) has recently installed two photonic QPUs, built by ORCA Computing, connected to a new supercomputer partition accelerated by NVIDIA Hopper.

NVIDIA Accelerates Quantum Computing Exploration at Australia's Pawsey Supercomputing Centre

NVIDIA today announced that Australia's Pawsey Supercomputing Research Centre will add the NVIDIA CUDA Quantum platform accelerated by NVIDIA Grace Hopper Superchips to its National Supercomputing and Quantum Computing Innovation Hub, furthering its work driving breakthroughs in quantum computing.

Researchers at the Perth-based center will leverage CUDA Quantum - an open-source hybrid quantum computing platform that features powerful simulation tools, and capabilities to program hybrid CPU, GPU and QPU systems - as well as, the NVIDIA cuQuantum software development kit of optimized libraries and tools for accelerating quantum computing workflows. The NVIDIA Grace Hopper Superchip - which combines the NVIDIA Grace CPU and Hopper GPU architectures - provides extreme performance to run high-fidelity and scalable quantum simulations on accelerators and seamlessly interface with future quantum hardware infrastructure.

Canada Partners With NVIDIA to Supercharge Computing Power

AI is reshaping industries, society and the "very fabric of innovation"—and Canada is poised to play a key role in this global transformation, said NVIDIA founder and CEO Jensen Huang during a fireside chat with leaders from across Canada's thriving AI ecosystem. "Canada, as you know, even though you're so humble, you might not acknowledge it, is the epicenter of the invention of modern AI," Huang told an audience of more than 400 from academia, industry and government gathered Thursday in Toronto.

In a pivotal development, Canada's Industry Minister François-Philippe Champagne shared Friday on X, formerly known as Twitter, that Canada has signed a letter of intent with NVIDIA. Nations including Canada, France, India and Japan are discussing the importance of investing in "sovereign AI capabilities," Huang said in an interview with Bloomberg Television in Canada. Such efforts promise to enhance domestic computing capabilities, turbocharging local economies and unlocking local talent. "Their natural resource, data, should be refined and produced for their country. The recognition of sovereign AI capabilities is global," Huang told Bloomberg.

Korea Quantum Computing Signs IBM watsonx Deal

IBM has announced (on January 29) that Korea Quantum Computing (KQC) has engaged IBM to offer IBM's most advanced AI software and infrastructure, as well as quantum computing services. KQC's ecosystem of users will have access to IBM's full stack solution for AI, including watsonx, an AI and data platform to train, tune and deploy advanced AI models and software for enterprises. KQC is also expanding its quantum computing collaboration with IBM. Having operated as an IBM Quantum Innovation Center since 2022, KQC will continue to offer access to IBM's global fleet of utility-scale quantum systems over the cloud. Additionally, IBM and KQC plan to deploy an IBM Quantum System Two on-site at KQC in Busan, South Korea by 2028.

"We are excited to work with KQC to deploy AI and quantum systems to drive innovation across Korean industries. With this engagement, KQC clients will have the ability to train, fine-tune, and deploy advanced AI models, using IBM watsonx and advanced AI infrastructure. Additionally, by having the opportunity to access IBM quantum systems over the cloud, today—and a next-generation quantum system in the coming years—KQC members will be able to combine the power of AI and quantum to develop new applications to address their industries' toughest problems," said Darío Gil, IBM Senior Vice President and Director of Research. This collaboration includes an investment in infrastructure to support the development and deployment of generative AI. Plans for the AI-optimized infrastructure includes advanced GPUs and IBM's Artificial Intelligence Unit (AIU), managed with Red Hat OpenShift to provide a cloud-native environment. Together, the GPU system and AIU combination is being engineered to offer members state-of-the-art hardware to power AI research and business opportunities.
Return to Keyword Browsing
Mar 26th, 2025 05:44 EDT change timezone

New Forum Posts

Popular Reviews

Controversial News Posts