News Posts matching #quantum computing

Return to Keyword Browsing

Colorado's Maybell Quantum Exits Stealth; Breakthrough Quantum Hardware to be Made in USA

This morning, Maybell Quantum unveiled the Icebox, a cryogenic platform to power the next generation of quantum computers. Maybell's Icebox solves several pressing challenges for scaling quantum. Quantum computing is a reinvention of computing. It will perform calculations in seconds that would require billions of years for today's most powerful supercomputers, with profound implications for everything from logistics and agriculture to medicine and climate change. But achieving reliable quantum computation requires qubits - quantum computers' fundamental building block - be in a state where they can be finely manipulated and communicated with through minute signals. Maybell's approach to these challenges has attracted contracts from DARPA, NSIC/DIU, and leading research universities, and is now available to the quantum computing industry.

"Controlling quantum devices at room-temperature is like playing a sonata in a hurricane," explains Corban Tillemann-Dick, Maybell's CEO. "Cooling devices to a few thousandths of a degree above absolute zero, nature's 'speed limit for cold,' calms this chaos to near 'quantum silence' so quantum operations are controllable." Traditional quantum cryogenic systems, however, are tangles of tubes and wires that cover hundreds of square feet and often require months to set up and PhDs to operate. Moreover, to increase capacity, these systems typically become even larger and more complex.

IBM Welcomes LG Electronics to the IBM Quantum Network to Advance Industry Applications of Quantum Computing

IBM today announced that LG Electronics has joined the IBM Quantum Network to advance the industry applications of quantum computing. By joining the IBM Quantum Network, IBM will provide LG Electronics access to IBM's quantum computing systems, as well as to IBM's quantum expertise and Qiskit, IBM's open-source quantum information software development kit.

LG Electronics aims to explore applications of quantum computing in industry to support big data, artificial intelligence, connected cars, digital transformation, IoT, and robotics applications - all of which require processing a large amount of data. With IBM Quantum, LG can leverage quantum computing hardware and software advances and applications as they emerge, in accordance with IBM's quantum roadmap. By leveraging IBM Quantum technology, LG will provide workforce training to its employees, permitting LG to investigate how potential breakthroughs can be applied to its industry.

Intel Breakthroughs Propel Moore's Law Beyond 2025

In its relentless pursuit of Moore's Law, Intel is unveiling key packaging, transistor and quantum physics breakthroughs fundamental to advancing and accelerating computing well into the next decade. At IEEE International Electron Devices Meeting (IEDM) 2021, Intel outlined its path toward more than 10x interconnect density improvement in packaging with hybrid bonding, 30% to 50% area improvement in transistor scaling, major breakthroughs in new power and memory technologies, and new concepts in physics that may one day revolutionize computing.

"At Intel, the research and innovation necessary for advancing Moore's Law never stops. Our Components Research Group is sharing key research breakthroughs at IEDM 2021 in bringing revolutionary process and packaging technologies to meet the insatiable demand for powerful computing that our industry and society depend on. This is the result of our best scientists' and engineers' tireless work. They continue to be at the forefront of innovations for continuing Moore's Law," said Robert Chau, Intel Senior Fellow and general manager of Components Research.

Honeywell Quantum Solutions and Cambridge Quantum Merge to Create Quantinuum - The Largest Quantum Computing Company

The two leading companies in the quantum computing industry have combined to create Quantinuum, thereby accelerating the development of quantum computing and innovation of quantum technologies in a platform agnostic manner to deliver real-world quantum-enabled solutions for some of the most intractable problems that classical computers have not been able to solve.

Cambridge Quantum, the pioneer in quantum software, operating systems, and cybersecurity, and Honeywell Quantum Solutions, which has built the highest-performing quantum hardware, based on trapped-ion technologies, today announced they have satisfied all of the conditions required to close the business combination and formed the new company, now called Quantinuum.

IBM Unveils Breakthrough 127-Qubit Quantum Processor

IBM today announced its new 127-quantum bit (qubit) 'Eagle' processor at the IBM Quantum Summit 2021, its annual event to showcase milestones in quantum hardware, software, and the growth of the quantum ecosystem. The 'Eagle' processor is a breakthrough in tapping into the massive computing potential of devices based on quantum physics. It heralds the point in hardware development where quantum circuits cannot be reliably simulated exactly on a classical computer. IBM also previewed plans for IBM Quantum System Two, the next generation of quantum systems.

Quantum computing taps into the fundamental quantum nature of matter at subatomic levels to offer the possibility of vastly increased computing power. The fundamental computational unit of quantum computing is the quantum circuit, an arrangement of qubits into quantum gates and measurements. The more qubits a quantum processor possesses, the more complex and valuable the quantum circuits that it can run.

Intel and QuTech Demonstrate Advances in Solving Quantum Interconnect Bottlenecks

Today, Intel and QuTech—a collaboration between Delft University of Technology and the Netherlands Organisation for Applied Scientific Research - published key findings in quantum research to address the "interconnect bottleneck" that exists between quantum chips that sit in cryogenic dilution refrigerators and the complex room-temperature electronics that control the qubits. The innovations were covered in Nature, the industry-leading science journal of peer-reviewed research, and mark an important milestone in addressing one of the biggest challenges to quantum scalability with Intel's cryogenic controller chip Horse Ridge.

"Our research results, driven in partnership with QuTech, quantitatively prove that our cryogenic controller, Horse Ridge, can achieve the same high-fidelity results as room-temperature electronics while controlling multiple silicon qubits. We also successfully demonstrated frequency multiplexing on two qubits using a single cable, which clears the way for simplifying the "wiring challenge" in quantum computing. Together, these innovations pave the way for fully integrating quantum control chips with the quantum processor in the future, lifting a major roadblock in quantum scaling," said Stefano Pellerano, principal engineer at Intel Labs.

Intel Debuts 2nd-Gen Horse Ridge Cryogenic Quantum Control Chip

At an Intel Labs virtual event today, Intel unveiled Horse Ridge II, its second-generation cryogenic control chip, marking another milestone in the company's progress toward overcoming scalability, one of quantum computing's biggest hurdles. Building on innovations in the first-generation Horse Ridge controller introduced in 2019, Horse Ridge II supports enhanced capabilities and higher levels of integration for elegant control of the quantum system. New features include the ability to manipulate and read qubit states and control the potential of several gates required to entangle multiple qubits.

"With Horse Ridge II, Intel continues to lead innovation in the field of quantum cryogenic controls, drawing from our deep interdisciplinary expertise bench across the Integrated Circuit design, Labs and Technology Development teams. We believe that increasing the number of qubits without addressing the resulting wiring complexities is akin to owning a sports car, but constantly being stuck in traffic. Horse Ridge II further streamlines quantum circuit controls, and we expect this progress to deliver increased fidelity and decreased power output, bringing us one step closer toward the development of a 'traffic-free' integrated quantum circuit."-Jim Clarke, Intel director of Quantum Hardware, Components Research Group, Intel.

Intel Collaborates with Argonne National Laboratory, DOE in Q-NEXT Quantum Computing Research

Intel today announced that it is among the leading U.S. quantum technology companies included in Q-NEXT, one of five new national quantum research centers established by the White House Office of Science and Technology Policy (OSTP) and the U.S. Department of Energy (DOE). Q-NEXT, National Quantum Information Science Research Center, is led by Argonne National Laboratory and brings together world-class researchers from national laboratories, universities and leading technology companies to ensure U.S. scientific and economic leadership in this advancing field. The collaboration will enable Intel to actively contribute to the industry's efforts on quantum computing.

"Advancing quantum practicality will be a team sport across the ecosystem, and our partnership with Argonne National Laboratory on Q-NEXT will enable us to bring our unique areas of expertise to this cross-industry effort to drive meaningful progress in the field. At Intel, we are taking a broad view of quantum research that spans hardware and software with a singular focus on getting quantum out of labs and into the real world, where it can solve real problems," said James Clarke, director of Quantum Hardware at Intel.

IBM Delivers Its Highest Quantum Volume to Date

Today, IBM has unveiled a new milestone on its quantum computing road map, achieving the company's highest Quantum Volume to date. Combining a series of new software and hardware techniques to improve overall performance, IBM has upgraded one of its newest 27-qubit client-deployed systems to achieve a Quantum Volume 64. The company has made a total of 28 quantum computers available over the last four years through IBM Quantum Experience.

In order to achieve a Quantum Advantage, the point where certain information processing tasks can be performed more efficiently or cost effectively on a quantum computer, versus a classical one, it will require improved quantum circuits, the building blocks of quantum applications. Quantum Volume measures the length and complexity of circuits - the higher the Quantum Volume, the higher the potential for exploring solutions to real world problems across industry, government, and research.

To achieve this milestone, the company focused on a new set of techniques and improvements that used knowledge of the hardware to optimally run the Quantum Volume circuits. These hardware-aware methods are extensible and will improve any quantum circuit run on any IBM Quantum system, resulting in improvements to the experiments and applications which users can explore. These techniques will be available in upcoming releases and improvements to the IBM Cloud software services and the cross-platform open source software development kit (SDK) Qiskit.

Honeywell Announces the World's Most Powerful Quantum Computer

Honeywell, a multinational conglomerate specializing in the quantum computing field, today announced they have created the world's most advanced quantum computer. Their new solution brings about a quantum computing volume set at 64 - twice the quantum volume of the world's previous most powerful quantum computer, the IBM Raleigh. You might be looking at that 64 quantum volume, wondering what that means - and where did the qubits metric go. Well, the thing with quantum computers is that the number of qubits can't really be looked at as a definite measure of performance - instead, it's just a part of the "quantum volume" calculation, which expresses the final performance of a quantum system.

When you make operations at the quantum level, a myriad of factors come into play that adversely impact performance besides the absolute number of qubits, such as the calculation error rate (ie, how often the system outputs an erroneous answer to a given problem) as well as the qubit connectivity level. Qubit connectivity expresses a relationship between the quantum hardware capabilities of a given machine and the ability of the system to distribute workloads across qubits - sometimes the workloads can only be distributed to two adjacent qubits, other times, it can be distributed to qubits that are more far apart within the system without losing data coherency and without affecting error rates - thus increasing performance and the systems' flexibility towards processing workloads. If you've seen Alex Garland's Devs series on Hulu (and you should; it's great), you can see a would-be-quantum computer and all its intricate connections. Quantum computers really are magnificent crossovers of science, materials engineering, and computing. Of course, the quantum computing arms race means that Honeywell's system will likely be dethroned by quantum volume rather soon.

NEC and D-Wave Begin Joint Quantum Product Development

NEC Corporation, a leader in the integration of IT and network technologies, and D-Wave Systems Inc., the leader in quantum computing systems, software and services, today announced that they have begun joint activities to combine the compute power of NEC's systems with the quantum computing power of D-Wave's systems, software and cloud service to bring those combined capabilities to customers in Japan. NEC has made a US$10 million investment in D-Wave in connection with this initiative.

The two companies will work together on the development of hybrid quantum/classical technologies and services that combine the best features of classical computers and quantum computers; the development of new hybrid applications that make use of those services; and joint marketing and sales go-to-market activities to promote quantum computing.

Hot Chips 2020 Program Announced

Today the Hot Chips program committee officially announced the August conference line-up, posted to hotchips.org. For this first-ever live-streamed Hot Chips Symposium, the program is better than ever!

In a session on deep learning training for data centers, we have a mix of talks from the internet giant Google showcasing their TPUv2 and TPUv3, and a talk from startup Cerebras on their 2nd gen wafer-scale AI solution, as well as ETH Zurich's 4096-core RISC-V based AI chip. And in deep learning inference, we have talks from several of China's biggest AI infrastructure companies: Baidu, Alibaba, and SenseTime. We also have some new startups that will showcase their interesting solutions—LightMatter talking about its optical computing solution, and TensTorrent giving a first-look at its new architecture for AI.
Hot Chips

Intel and QuTech Demonstrate High-Fidelity 'Hot' Qubits for Practical Quantum Systems

Intel, in collaboration with QuTech, today published a paper in Nature demonstrating the successful control of "hot" qubits, the fundamental unit of quantum computing, at temperatures greater than 1 kelvin. The research also highlighted individual coherent control of two qubits with single-qubit fidelities of up to 99.3%. These breakthroughs highlight the potential for cryogenic controls of a future quantum system and silicon spin qubits, which closely resemble a single electron transistor, to come together in an integrated package.

"This research represents a meaningful advancement in our research into silicon spin qubits, which we believe are promising candidates for powering commercial-scale quantum systems, given their resemblance to transistors that Intel has been manufacturing for more than 50 years. Our demonstration of hot qubits that can operate at higher temperatures while maintaining high fidelity paves the way to allow a variety of local qubit control options without impacting qubit performance," said Jim Clarke, director of quantum hardware, Intel Labs.

Intel and QuTech Detail "Horse Ridge," First Cryogenic Quantum Computing Control Chip

Intel Labs, in collaboration with QuTech ‑ a partnership between TU Delft and TNO (Netherlands Organization for Applied Scientific Research) ‑ outlines key technical features of its new cryogenic quantum control chip "Horse Ridge" in a research paper released at the 2020 International Solid-State Circuits Conference (ISSCC) in San Francisco. The paper unveils key technical capabilities of Horse Ridge that address fundamental challenges in building a quantum system powerful enough to demonstrate quantum practicality: scalability, flexibility and fidelity.

"Today, quantum researchers work with just a small number of qubits, using smaller, custom-designed systems surrounded by complex control and interconnect mechanisms. Intel's Horse Ridge greatly minimizes this complexity. By systematically working to scale to thousands of qubits required for quantum practicality, we're continuing to make steady progress toward making commercially viable quantum computing a reality in our future," said Jim Clarke, director of quantum hardware, Intel Labs.

AMD Says Not to Count on Exotic Materials for CPUs in the Next Ten Years, Silicon Is Still Computing's Best Friend

AMD's senior VP of AMD's datacentre group Forrest Norrod, at the Rice Oil and Gas HPC conference, said that while graphene does have incredible promise for the world of computing, it likely will take some ten years before such exotic material are actually taken advantage off. As Norrod puts it, silicon still has a pretty straightforward - if increasingly complex - path down to 3 nanometer densities. And according to him, at the rate manufacturers are being able to scale down their production nodes further, the average time between node transitions stands at some four or five years - which makes the jump to 5 nm and then 3 nm look exactly some 10 years from now, where Norrod expects to go through two additional shrinking nodes for the manufacturing process.

Of course, graphene is being hailed as the next best candidate for taking over silicon's place at the heart of our more complex, high-performance electronics, due, in part, to its high conductivity independent of temperature variation and its incredible switching resistance - it has been found to be able to operate at Terahertz switching speeds. It's a 2D material, which means that implementations of it will have to occur in deposited sheets of graphene across some other material.

IBM Expands Strategic Partnership with Samsung to Include 7nm Chip Manufacturing

IBM today announced an agreement with Samsung to manufacture 7-nanometer (nm) microprocessors for IBM Power Systems , IBM Z and LinuxONE , high-performance computing (HPC) systems, and cloud offerings. The agreement combines Samsung's industry-leading semiconductor manufacturing with IBM's high-performance CPU designs. This combination is being designed to drive unmatched systems performance, including acceleration, memory and I/O bandwidth, encryption and compression speed, as well as system scaling. It positions IBM and Samsung as strategic partners leading the new era of high-performance computing specifically designed for AI.

"At IBM, our first priority is our clients," said John Acocella, Vice President of Enterprise Systems and Technology Development for IBM Systems. "IBM selected Samsung to build our next generation of microprocessors because they share our level of commitment to the performance, reliability, security, and innovation that will position our clients for continued success on the next generation of IBM hardware."

Intel Starts Testing Smallest 'Spin Qubit' Chip for Quantum Computing

Intel researchers are taking new steps toward quantum computers by testing a tiny new "spin qubit" chip. The new chip was created in Intel's D1D Fab in Oregon using the same silicon manufacturing techniques that the company has perfected for creating billions of traditional computer chips. Smaller than a pencil's eraser, it is the tiniest quantum computing chip Intel has made.

The new spin qubit chip runs at the extremely low temperatures required for quantum computing: roughly 460 degrees below zero Fahrenheit - 250 times colder than space. The spin qubit chip does not contain transistors - the on/off switches that form the basis of today's computing devices - but qubits (short for "quantum bits") that can hold a single electron. The behavior of that single electron, which can be in multiple spin states simultaneously, offers vastly greater computing power than today's transistors, and is the basis of quantum computing.

The Future of Quantum Computing is Counted in Qubits

At CES 2018 in January, Intel CEO Brian Krzanich predicted that quantum computing will solve problems that today take months or years for our most powerful supercomputers to resolve. Krzanich then unveiled Intel's 49-qubit superconducting quantum test chip, code-named "Tangle Lake."

Quantum computing is heralded for its potential. Leaders in scientific and industrial fields are hopeful quantum computing will speed advances in chemistry, drug development, financial modeling and climate change.

Intel Sees Promise of Silicon Spin Qubits for Quantum Computing

Quantum computing is heralded for its potential to tackle problems that today's conventional computers can't handle. Scientists and industries are looking to quantum computing to speed advancements in areas like chemistry or drug development, financial modeling, and even climate forecasting.

To deliver on quantum computing's potential, Intel initiated a collaborative research program in 2015 with the goal of developing a commercially viable quantum computing system. While there's been significant progress, quantum computing research is still nascent. The industry is at mile one in a marathon, and to realize this new computing paradigm, many problems must be solved and many architectural decisions must be made. For example, it's not yet clear what form quantum processors (or "qubits") will take. That's why Intel is placing two major research bets and investing in them equally.

Intel Advances Quantum and Neuromorphic Computing Research

Today at the 2018 Consumer Electronics Show in Las Vegas, Intel announced two major milestones in its efforts to research and develop future computing technologies including quantum and neuromorphic computing, which have the potential to help industries, research institutions and society solve problems that currently overwhelm today's classical computers.

During his keynote address, Intel CEO Brian Krzanich announced the successful design, fabrication and delivery of a 49-qubit superconducting quantum test chip. The keynote also noted the promise of neuromorphic computing.

DARPA Believes the Future of Security to be in Additional Processing Hardware

DARPA seems to be taking to heart engineer and cyber-security experts' opinions that hardware-based security would be the best security. The Defense Advanced Research Agency (DARPA), which has appeared in every other sci-fi war movie, has started its System Security Integrated through Hardware and Firmware (SSITH) program, with an initial kick worth $3.6 million to the University of Michigan. The objective? To develop "unhackable" systems, with hardware-based security solutions that become impervious to most software exploits.

Electrical Engineering and Computer Science (EECS) of the University of Michigan Professor Todd Austin, lead researcher on the project, says his team's approach, currently code-named Morpheus, achieves hack-proof hardware by "changing the internal codes once a second". Austin likens Morpheus' defenses to requiring a would-be attacker to solve a new Rubik's Cube every second to crack the chip's security. In this way, the architecture should provide the maximum possible protection against intrusions, including hacks that exploit zero-day vulnerabilities, or those that cybersecurity experts have yet to discover. Morpheus thereby provides a future-proof solution, Austin said. "This race against ever more clever cyberintruders is never going to end if we keep designing our systems around gullible hardware that can be fooled in countless ways by software," SSITH program manager Linton Salmon of the Agency's Microsystems Technology Office.

The Future is Quantum: Microsoft Releases Free Preview of Q# Development Kit

So you want to learn how to program a quantum computer. Now, there's a toolkit for that. Microsoft is releasing a free preview version of its Quantum Development Kit, which includes the Q# programming language, a quantum computing simulator and other resources for people who want to start writing applications for a quantum computer. The Q# programming language was built from the ground up specifically for quantum computing.

The Quantum Development Kit, which Microsoft first announced at its Ignite conference in September, is designed for developers who are eager to learn how to program on quantum computers whether or not they are experts in the field of quantum physics. It's deeply integrated into Visual Studio, Microsoft's suite of developer tools, so aspects of it will be familiar to people who are already developing applications in other programming languages. And it's designed to work with a local quantum simulator, also released as part of the kit, that can simulate around 30 logical qubits of quantum computing power using a typical laptop computer. That will allow developers to debug quantum code and test programs on small instances right on their own computers.

Japan Opens Prototype Quantum Computing System for Public, Worldwide Use

Japan's Nippon Telegraph and Telephone Company (NTT) is opening up its prototype quantum computing system for public use over the internet, giving users around the world access to one of the most elusive pieces of tech that this world has yet seem. Maybe we haven't seen it, though; observation does change the outcome, and these quantum physics really are as finicky as they come. Starting Nov. 27, Japan joins China and the U.S. in the race to develop the world's most advanced computers - and Japan has chosen the free, quantum-democratizing approach.

The NTT quantum computing solution is a state-sponsored research project, developed in conjunction with the National Institute of Informatics, Osaka university, and other partners. It has taken a different technical approach from other quantum computing developers, in that this particular computing system is exploiting the properties of light. Widely (un)known as Linear Optics Quantum Computation (LOQC), this particular approach foregoes qubits (which are extremely difficult to keep from decohering, and usually require very exotic cooling techniques to increase the qubits' stability. LOQC abandons qubits and uses photons to represent them as information carriers through linear optical elements (such as beam splitters, phase shifters, and mirrors). This allows the machine to process quantum information, using photon detectors and quantum memories to detect and store quantum information.

Intel Delivers 17-qubit Superconducting Chip with Advanced Packaging to QuTech

Today, Intel announced the delivery of a 17-qubit superconducting test chip for quantum computing to QuTech, Intel's quantum research partner in the Netherlands. The new chip was fabricated by Intel and features a unique design to achieve improved yield and performance. The delivery of this chip demonstrates the fast progress Intel and QuTech are making in researching and developing a working quantum computing system. It also underscores the importance of material science and semiconductor manufacturing in realizing the promise of quantum computing.

Quantum computing, in essence, is the ultimate in parallel computing, with the potential to tackle problems conventional computers can't handle. For example, quantum computers may simulate nature to advance research in chemistry, materials science and molecular modeling - like helping to create a new catalyst to sequester carbon dioxide, or create a room temperature superconductor or discover new drugs. However, despite much experimental progress and speculation, there are inherent challenges to building viable, large-scale quantum systems that produce accurate outputs. Making qubits (the building blocks of quantum computing) uniform and stable is one such obstacle.

Rambus Explores Future Memory Systems

Rambus Inc. (NASDAQ: RMBS) today announced it will collaborate with Microsoft researchers in the exploration of future memory requirements for quantum computing. The expertise of Rambus in high-bandwidth, power-efficient memory architectures, combined with Microsoft researchers' knowledge of advanced system and data center design will be applied to drive new technology platforms.

"Existing computer architectures are reaching limits due to the ever increasing demands of real-time data consumption, which is driving the need to explore new high-performance, energy-efficient computer systems," said Gary Bronner, vice president of Rambus Labs. "By working with Microsoft on this project, we can leverage our vast expertise in memory systems to identify new architectural models."
Return to Keyword Browsing
Jan 18th, 2025 03:55 EST change timezone

New Forum Posts

Popular Reviews

Controversial News Posts