ROCCAT Kone Pure Ultra Review 3

ROCCAT Kone Pure Ultra Review

Software & Lighting »

Sensor and Performance

The Kone Pure Ultra is equipped with the PixArt PMW3389. According to specifications, the 3389 is capable of up to 16,000 CPI, as well as a maximum tracking speed of 400 IPS, which equals 10.16 m/s. Out of the box, there are five pre-defined CPI steps available: 400, 800, 1200, 1600, and 3200 CPI.

CPI Accuracy

"CPI" (short for counts per inch) describes the amount of counts registered by the mouse if it is moved exactly one inch. There are several factors (firmware, mounting height of the sensor not meeting specifications, mouse feet thickness, mousing surface, among others) which may contribute to nominal CPI not matching actual CPI. It is impossible to always achieve a perfect match, but ideally, nominal and actual CPI should differ as little as possible. In this test I'm determining whether this is the case or not. However, please keep in mind that said variance will still vary from unit to unit, so your mileage may vary.


I've restricted my testing to the four most common CPI steps, which are 400, 800, 1600, and 3200. As you can see, deviation is neither low nor high (and not consistent), which is an average result. In order to achieve accurate values I've used corrected steps of 400/800/1550/3100 to account for the measured CPI deviation.

Motion Delay

"Motion delay" encompasses all kinds of sensor lag. Any further sources of input delay will not be recorded in this test. The main thing I'll be looking for in this test is sensor smoothing, which describes an averaging of motion data across several capture frames in order to reduce jitter at higher CPI values, increasing motion delay along with it. The goal here is to have as little smoothing as possible. As there is no way to accurately measure motion delay absolutely, it can only be done by comparison with a control subject that has been determined to have the lowest possible motion delay. In this case the control subject is a G403, whose 3366 has no visible smoothing across the entire CPI range.


First, I'm looking at two xCounts plots—generated at 1600 and 3200 CPI—to quickly gauge whether there is any smoothing present, which would be indicated by any visible "kinks." Typically, the 3200 CPI plot would be expected to show such "kinks" given the 3389 usually has 32 frames of smoothing at and above 1900 CPI, which amounts to an added motion delay of roughly 4 ms at the lowest possible speed. As you can see, this is the case here, which confirms that the 3389 in the Kone Pure Ultra indeed performs as expected. As an aside, the three dotted lines being visible points towards SPI timing having significant jitter.


In order to verify the results from the xCount plots above, I'm looking at xSum plots generated at 1600, 1900, and 16,000 CPI. The line further to the left denotes the sensor with less motion delay. At 1600 CPI, motion delay is identical; at 1900 CPI, motion delay is roughly 4 ms; and at 16,000 CPI, motion delay is roughly 15 ms. All of this is expected behavior as the 3389 has 32 frames of smoothing at and above 1900 CPI, which is then doubled at 6000 CPI and 11300 CPI.


What people typically mean when they talk about "acceleration" is speed-related accuracy variance (or short SRAV). It's not about the mouse having a set amount of inherent positive or negative acceleration but about the cursor not traveling the same distance if the mouse is moved the same physical distance at different speeds. The easiest way to test this is by comparison with a control subject that is known to have very low SRAV, which in this case is the G403. As you can see from the plot, no displacement between the two cursor paths can be observed, which confirms that SRAV is very low.

Perfect Control Speed


Perfect Control Speed (or PCS for short) is the maximum speed up to which the mouse and its sensor can be moved without the sensor malfunctioning in any way. I've only managed to hit a measly 4.5 m/s (which is within the proclaimed PCS range), at which no sign of the sensor malfunctioning can be observed.

Polling Rate Stability



The first three possible settings (125 Hz, 250 Hz, and 500 Hz) look nice and stable. The 1000 Hz setting, however, was not stable at all times. Please keep in mind that this test also measures stability on the system end, which means this result isn't necessarily representative of the stability of the device's USB communication (In order to reliably test that an oscilloscope would be necessary).

Paint Test


This test is used to indicate any potential issues with angle snapping (non-native straightening of linear motion) and jitter, along with any sensor lens rattle. As you can see, no issues with angle snapping can be observed. No jitter is visible at 400 and 1600 CPI, but there is some jitter at 16,000, which is remarkable given the insane amount of smoothing present at that CPI level. Lastly, no sensor lens rattle can be observed.

Lift-off Distance

The Kone Pure Ultra offers two pre-defined LOD settings as well as the option to manually calibrate LOD. The "very low" (default) setting does not track at a height of 1 DVD. The "low" setting does track at a height of 1 DVD and barely at a height of 2 DVDs. It should be kept in mind, however, that LOD may vary slightly depending on the mousing surface (pad) it is being used on.

Click Latency


Since mechanical switches are being used for the buttons in most computer mice, debouncing is required in order to avoid unintended double clicks. Debouncing typically adds a delay (along with any potential processing delay), which shall be referred to as click latency. As there is no way to measure said delay directly, it has to be done by comparing it to a control subject, which in this case is the Logitech G203.

The ROCCAT Kone Pure Ultra features a rather interesting and unusual function in the software called "Zero Debounce." The naming scheme is highly descriptive in this case as it does exactly what it sounds like. With Zero Debounce set to off the usual debouncing is performed, which introduces a delay but prevents slam clicks from happening. With it enabled, no debounce delay is applied, reducing click latency accordingly, but introducing the possibility of slam clicks. With Zero Debounce disabled, click latency has been measured to be roughly +6.8 ms when compared to the SteelSeries Ikari, which is considered as the baseline with 0 ms. With Zero Debounce enabled, click latency has been measured to be roughly -0.15 ms. Please keep in mind that the measured value is not the absolute click latency. Comparison data comes from this thread as well as my own testing, using qsxcv's program.
Next Page »Software & Lighting
View as single page
Dec 29th, 2024 11:19 EST change timezone

New Forum Posts

Popular Reviews

Controversial News Posts