Monday, October 15th 2018
Intel Xeon W-3175X to Lack STIM, Retain Thermal Paste for IHS
Soldered thermal interface material, or STIM, has been one of Intel's key feature-additions to its high-end 9th generation Core i7 and Core i9 processors. Besides higher clock-speeds, STIM is the only feature that sets its refreshed Core X 9000-series family apart from Core X 7000-series. STIM is also only given to the i9-9900K and i7-9700K in the mainstream-desktop space. The 28-core Xeon W-3175X was touted by Intel to be a high-end desktop (HEDT) processor initially, before Intel decided to retain the Xeon brand and target the gray-area between HEDTs and workstations. This also means that the W-3175X will lack STIM, as confirmed by an Intel spokesperson in an interview with PC World.
Soldered TIM is preferred by PC enthusiasts as it offers superior heat-transfer between the CPU die and the integrated heatspreader. Intel's decision to equip the Core X 9000-series and higher-end Coffee Lake-Refresh parts with it, is aimed at improving the thermals and overclocking headrooms of its products. The lack of STIM for the W-3175X speaks for its intended use-case - a workstation processor that can be overclocked, provided it's de-lidded and cooled by exotic methods such as liquid nitrogen evaporators. Intel's branding decisions could be guided by AMD's decision to side-brand its 24-core and 32-core Ryzen Threadripper processors as "WX," which focuses on their workstation proficiency while slightly toning down their PC enthusiast appeal.
Sources:
OC3D.net, PCWorld (YouTube)
Soldered TIM is preferred by PC enthusiasts as it offers superior heat-transfer between the CPU die and the integrated heatspreader. Intel's decision to equip the Core X 9000-series and higher-end Coffee Lake-Refresh parts with it, is aimed at improving the thermals and overclocking headrooms of its products. The lack of STIM for the W-3175X speaks for its intended use-case - a workstation processor that can be overclocked, provided it's de-lidded and cooled by exotic methods such as liquid nitrogen evaporators. Intel's branding decisions could be guided by AMD's decision to side-brand its 24-core and 32-core Ryzen Threadripper processors as "WX," which focuses on their workstation proficiency while slightly toning down their PC enthusiast appeal.
19 Comments on Intel Xeon W-3175X to Lack STIM, Retain Thermal Paste for IHS
Now an unlocked Xeon, which was supposed to be HEDT, without STIM :twitch:
Are they gonna release another updated part with solder next year & charge 10k for that :roll:
It'll be so expensive it simply will not compete with 2990WX, at all. People who are going to buy this would've bought Intel anyway. shrug
And without exotic cooling/OC/even more power consumption the 28 core is just gonna throttle nonstop and won't provide better performance than 2990 in most cases, but is still expensive.
2950X:
For lots of cores, I'd rather have a 2950X, even if it has it's own set of problems regarding memory access (it's basically a 2P dual CPU system on a socket). Then again, in today's software ecosystem (including gaming), I think the 9900K or the 2700X (with proper memory) are far far better investments. The W-3175X is just too strange, it's a bad platform for the masses, the motherboards make no sense, too big in size, too complicated in power delivery. But the W-3175X will be the overall king, make no mistake about it. Price will always suck at this level.
The Xeon will not be cheaper, taking into account the overall platform cost & the extra cost of cooling.
Why Intel! Why!!??
Seriously.. is it that hard to do STIM on their huge cores? If AMD could do it with Bulldozer... surely Intel can do it.
There is also the issue of intel's modular design not scaling well. Sure, all the cores have direct memory access, but funny thing, you load up all 28 cores and memory performance tanks anyway. Some of those cores simply cant get to memory or cache quick enough in a monolithic design, and when that happens, performance tanks. This can be seen in threadripper VS xeon multi-threaded benchmarks. There are some workloads where intel's monolithic design works against them, and now that AMD is competing, it shows whereas before nobody was any wiser.
Modular design has a lot of advantages, but also many disadvantages. It was the best option in the past, but as core counts climb, it may no longer be best practice.
Other then that, it's just a bit annoying, having to toggle two or three software switches for every application in advance. Not to mention the reboots. To combat this issue, the W-3175X has that six-channel integrated memory controller.
It is unfortunate that the hardware implementation of TR and the current OS implementations (looking at you Windows!) are a match made in hell. Perhaps Windows will, in the future, become more aware of the computing nodes it has available, and the way they are interconnected. Even Linux has some of these problems. It is unfortunate that Intel's pricing is so abominable. But, if we compare implementations, it is clear which one is superior.
You might think that a difference of 2500-3500 USD is something insurmountable, but for most people needing this many cores, it's about one week of revenue. And to them, playing with software switches and rebooting their system equates to losing time and money. And, if the alternative is better, even if a bit more expensive, it's actually a no-brainer.
But, the article is about the lack of STIM on the W-3175X. And there is some information that indicates STIM on such a large die can be detrimental, in some cases it can be the cause for micro-fractures in the actual silicon material. It's hard to buy that, Intel having unlimited piles of cash available for research and so on.
I say this because I think "performance can tank" means nothing in particular context. Does the scalability drop faster with this design as you increase the numbers of cores in use than compared to Skylake-X ? Probably, but then again most of the time you're going to encounter various bottlenecks and hard limits as you try to reach maximum instruction/data throughput anyway. Is that really the case ? Do people buying these sort of products do not care at all about performance/price ? I reckon they do, otherwise they'd chose to pour dozens of thousands of dollars in multiple server racks if performance is really all they seek. These platforms (TR/X299) are not meant to replace those types of solutions, hence why they are cheaper and why the scalability options are limited with them. These types of CPUs are meant specifically for people in need of high performance but not with endless pockets, pricing differentials can be insurmountable even in this case. They don't combat anything. Remember the origin of these CPUs, Skylake-X goes up to 6 memory channels and Epyc up to 8.
They were all designed to have as much memory bandwidth as they needed. In fact AMD's design probably ends up in less scenarios where that becomes the bottleneck. With TR4 AMD simply chose to cut down the design further. So Intel didn't combat anything in particular with this CPU, they just left it as it is. A part of me dies every time someone brings up gaming with regards to these CPUs.
Intel's decision to equip the Core X 9000-series and higher-end Coffee Lake-Refresh parts with it, is aimed at improving the thermals and overclocking headrooms of its products.
Wait what? So the 9600K and the rest of 9th gen mainstream parts wont have STIM. So these CPUs are just Coffee Lake rebranding, and not CF-Refresh at all? I guess the only CF-Refresh is the 8 core silicon.
It is this generalization that I'm trying to address. Because sweeping things like these under the rug because it's AMD, while clinging to every little seemingly bad thing because it's Intel... it just leads to bad decisions. And it's commendable that people want AMD to be great again, so we can have competition and all, but if it's done at the expense of "other", less knowledgeable people, count me out.
Also, please stop taking things out of context. I did say: "you really need to build a machine with a very targeted scope". And this makes the TR platform a specialized one, but why would you think I was talking about the enterprise rack server space, I don't know.
Anyway, off-topic discussion is off-topic.