Friday, October 2nd 2020
OIST Deploys AMD EPYC Processors with Over 2 PFLOPs of Computing Power Dedicated to Scientific Research
Today, AMD and Okinawa Institute of Science and Technology Graduate University (OIST), announced the deployment of AMD EPYC 7702 processors for use in a new, high performance computing system. The EPYC processor-based supercomputer will deliver the 2.36 petaflops of computing power OIST plans to use for scientific research at the University. The Scientific Computing & Data Analysis Section (SCDA) of OIST plans to implement the new supercomputer for supporting OIST computationally intensive research ranging from bioinformatics, computational neuroscience, and physics. SCDA adopted AMD EPYC after significant growth, including a 2X increase in users.
"2020 is a milestone year for OIST with new research units expanding the number of research areas. This growth is driving a significant increase in our computational needs," said Eddy Taillefer, Ph.D., Section Leader, Scientific Computing & Data Analysis Section. "Under the common resource model for which the computing system is shared by all OIST users we needed a significant increase in core-count capacity to both absorb these demands and cope with the significant growth of OIST. The latest AMD EPYC processor was the only technology that could match this core-count need in a cost-performance effective way."Key factors of OIST's selection of the AMD EPYC processors included superior cost-performance, memory/PCIe bandwidth, and high core counts per server. OIST plans to also consider EPYC processors for other growing computational needs for University researchers in the future.
"AMD is proud to be working with leading global institutions to bring scientific research to the forefront through the power of high performance computing technology," said Ram Peddibhotla, corporate vice president, EPYC product management, AMD. "With high performance capabilities, ease of management and scalability, 2nd Gen AMD EPYC processors can assist OIST researchers with advancing technological innovations and supporting their research goals in bioinformatics, computational neuroscience, and physics."
Learn more about the AMD EPYC processor here.
"2020 is a milestone year for OIST with new research units expanding the number of research areas. This growth is driving a significant increase in our computational needs," said Eddy Taillefer, Ph.D., Section Leader, Scientific Computing & Data Analysis Section. "Under the common resource model for which the computing system is shared by all OIST users we needed a significant increase in core-count capacity to both absorb these demands and cope with the significant growth of OIST. The latest AMD EPYC processor was the only technology that could match this core-count need in a cost-performance effective way."Key factors of OIST's selection of the AMD EPYC processors included superior cost-performance, memory/PCIe bandwidth, and high core counts per server. OIST plans to also consider EPYC processors for other growing computational needs for University researchers in the future.
"AMD is proud to be working with leading global institutions to bring scientific research to the forefront through the power of high performance computing technology," said Ram Peddibhotla, corporate vice president, EPYC product management, AMD. "With high performance capabilities, ease of management and scalability, 2nd Gen AMD EPYC processors can assist OIST researchers with advancing technological innovations and supporting their research goals in bioinformatics, computational neuroscience, and physics."
Learn more about the AMD EPYC processor here.
9 Comments on OIST Deploys AMD EPYC Processors with Over 2 PFLOPs of Computing Power Dedicated to Scientific Research
The soft advantages, which are particularly important to HPC, would be Intel's far superior tooling. Including hardware performance counters, Intel MKL (Math Kernel Library), ICC, VTune, and the like. AMD doesn't offer any real competition to Intel's software suite of tools, which is hugely important for optimization. AMD does offer uProf, GCC / CLang is pretty good... but they are definitely steps behind Intel's set of tools.
Even if AMD's CPUs are faster, optimizing code on AMD's CPUs will be a slightly harder job than using Intel's VTune. Especially if your developers are already familiar with VTune, why make them switch to AMD uProf?
Hell, you said it yourself:
You'd have to retune the code to "unlock" the performance of the EPYC. For many people, I'm sure it will be easier, and cheaper, to remain on Xeon Gold (even if the overall performance of the system is lower).
EDIT: And by "tuning", that might include rewriting portions of the Intel MKL library (which doesn't perform as well on EPYC servers).