Thursday, June 23rd 2022

Samsung Unveils ISOCELL Image Sensor with Industry's Smallest 0.56μm Pixel

Samsung Electronics Co., Ltd., a world leader in advanced semiconductor technology, today introduced the 200MP ISOCELL HP3, the image sensor with the industry's smallest 0.56-micrometer (μm)-pixels. "Samsung has continuously led the image sensor market trend through its technology leadership in high resolution sensors with the smallest pixels," said JoonSeo Yim, executive vice president of sensor business team at Samsung Electronics. "With our latest and upgraded 0.56μm 200MP ISOCELL HP3, Samsung will push on to deliver epic resolutions beyond professional levels for smartphone camera users."

Since its first 108MP image sensor roll-out in 2019, Samsung has been leading the trend of next-generation, ultra-high-resolution camera development. Through the steady launch of new image sensors and advancements in performance, the company is once again forging ahead with the 0.56μm 200MP ISOCELL HP3. The ISOCELL HP3, with a 12 percent smaller pixel size than the predecessor's 0.64μm, packs 200 million pixels in a 1/1.4" optical format, which is the diameter of the area that is captured through the camera lens. This means that the ISOCELL HP3 can enable an approximately 20 percent reduction in camera module surface area, allowing smartphone manufacturers to keep their premium devices slim.
The ISOCELL HP3 comes with a Super QPD auto-focusing solution, meaning that all of the sensor's pixels are equipped with auto-focusing capabilities. In addition, Super QPD uses a single lens over four-adjacent pixels to detect the phase differences in both horizontal and vertical directions. This paves way for a more accurate and quicker auto focusing for smartphone camera users.

The sensor also allows users to take videos in 8K at 30 frames-per-second (FPS) or 4K at 120fps, with minimal loss in the field of view when taking 8K videos. Combined with the Super QPD solution, users can take movie-like cinematic footage with their mobile devices.

Ultimate Low Light Experience through 'Tetra2pixel'
The ISOCELL HP3 also provides an ultimate low-light experience, with the Tetra2pixel technology that combines four pixels into one to transform the 0.56μm 200MP sensor into a 1.12μm 50MP sensor, or a 12.5MP sensor with 2.24μm-pixels by combining 16 pixels into one. The technology enables the sensor to simulate a large-sized pixel sensor to take brighter and more vibrant shots even in dimmed environments, like in-doors or during nighttime.

To maximize the dynamic range of the mobile image sensor, the ISOCELL HP3 adopts an improved Smart-ISO Pro feature. The technology merges image information made from the two conversion gains of Low and High ISO mode to create HDR images. The upgraded version of the technology comes with a triple ISO mode - Low, Mid, and High - that further widens the sensor's dynamic range. In addition, the improved Smart-ISO Pro enables the sensor to express images in over 4-trillion colors (14-bit color depth), 64 times more colors than the predecessor's 68 billion (12-bit). Furthermore, by supporting staggered HDR along with Smart-ISO Pro, the ISOCELL HP3 can switch between the two solutions depending on the filming environment to produce high-quality HDR images.

Samples of the Samsung ISOCELL HP3 are currently available, and mass production is set to begin this year.
Source: Samsung
Add your own comment

6 Comments on Samsung Unveils ISOCELL Image Sensor with Industry's Smallest 0.56μm Pixel

#1
Prima.Vera
This is interesting. How does this compare to simmilar big sensors found in professional DLSR cameras?
Posted on Reply
#2
dj-electric
Prima.VeraThis is interesting. How does this compare to simmilar big sensors found in professional DLSR cameras?
The marketing shot comes down to optics. Samsung was cheeky putting a giant lens on their sensor to produce the marketing behind their new sensor. They also probably collected the rawest output they could out of the sensor, and has equipped it with clean circuitry.
In reality, when dealing with such tight spaces as phones, your optics and circuitry are going to be far inferior in their ability.



If optics are completely out of the picture, which they shouldn't be, this sensor shouldn't be massively different than any other flagship phone sensor you will find today. The title boasts smallest pixel size for a phone sensor, which is sort of like boasting lower clocks for a proessor. Very backwards.

If your aim is well produced and post processed photos, typically the 1" type sensor category of cameras with proper sized lenses are still ahead of what sensor phones could do on phones with heavy in-device processing. Your dynamic range and optical characteristics will still look more natural, and are still much better resolved as raw data. We aren't going further in sensor size to Micro Four Thirds, APS-C and fullframe type since the argument still resolves itself at the 1" type sensor compact cameras of today.
Posted on Reply
#3
TheLostSwede
News Editor
Prima.VeraThis is interesting. How does this compare to simmilar big sensors found in professional DLSR cameras?
Not at all? Pixel binning to 50 Megapixels should be decent though.
Posted on Reply
#4
TheUn4seen
Prima.VeraThis is interesting. How does this compare to simmilar big sensors found in professional DLSR cameras?
This is just marketing aimed at people who stopped at the "higher number is obviously better" phase. Those high density tiny sensors are just a noisy mess which needs a lot of processing just to be barely acceptable, not to mention binning to get anything at all from them. Also, 1/1.4" is not big. It's barely fifth of APS-C which is the small DSLR format and roughly 1/12 of full frame.
Posted on Reply
#5
randomUser
So i don't get it, why do we need these super small pixels?

The general rule of thumb, if you want better quality, is to search for phones with as big image sensor as possible and as big pixel size as possible.
What they do is exactly opposite.
Also why bother grouping pixels together if you can get best results when producing them bigger in the first place.
The grouping also involves a lot more processing, thus needing more powerful image processors.
Posted on Reply
#6
TheLostSwede
News Editor
randomUserSo i don't get it, why do we need these super small pixels?
Because most moder phones uses four pixels to create one pixel, as it says in the press release. It seems to work quite well and I'm on my second phone that does this now, although this time around, I don't have a choice to use all the pixels.
randomUserThe general rule of thumb, if you want better quality, is to search for phones with as big image sensor as possible and as big pixel size as possible.
What they do is exactly opposite.
Also why bother grouping pixels together if you can get best results when producing them bigger in the first place.
The grouping also involves a lot more processing, thus needing more powerful image processors.
It's not the exact opposite though, at least not the way it's being used by most phone makers.
It's a different means to reach a similar result.
Because there are some advantages of pixel binning vs. having bigger pixels.
One of the main reasons for pixel binning is said to be lower image noise in low light situations.
Most phone SoCs handles that natively though, as they have dedicated co-processors for all of that stuff.
That said, some of the PRC based phone makers have developed their own chips for handling all of the image processing.
Posted on Reply
Dec 22nd, 2024 10:48 EST change timezone

New Forum Posts

Popular Reviews

Controversial News Posts