Intel Core Ultra 300 Series "Panther Lake" Leaks: 16 CPU Cores, 12 Xe3 GPU Cores, and Five-Tile Package
Intel is preparing to launch its next generation of mobile CPUs with Core Ultra 200 series "Lunar Lake" leading the charge. However, as these processors are about to hit the market, leakers reveal Intel's plans for the next-generation Core Ultra 300 series "Panther Lake". According to rumors, Panther Lake will double the core count of Lunar Lake, which capped out at eight cores. There are several configurations of Panther Lake in the making based on the different combinations of performance (P) "Cougar Cove," efficiency (E) "Skymont," and low power (LP) cores. First is the PTL-U with 4P+0E+4LP cores with four Xe3 "Celestial" GPU cores. This configuration is delivered within a 15 W envelope. Next, we have the PTL-H variant with 4P+8E+4LP cores for a total of 16 cores, with four Xe3 GPU cores, inside a 25 W package. Last but not least, Intel will also make PTL-P SKUs with 4P+8E+4LP cores, with 12 Xe3 cores, to create a potentially decent gaming chip with 25 W of power.
Intel's Panther Lake CPU architecture uses an innovative design approach, utilizing a multi-tile configuration. The processor incorporates five distinct tiles, with three playing active roles in its functionality. The central compute operations are handled by one "Die 4" tile with CPU and NPU, while "Die 1" is dedicated to platform control (PCD). Graphics processing is managed by "Die 5", leveraging Intel's Xe3 technology. Interestingly, two of the five tiles serve a primarily structural purpose. These passive elements are strategically placed to achieve a balanced, rectangular form factor for the chip. This design philosophy echoes a similar strategy employed in Intel's Lunar Lake processors. Panther Lake is poised to offer greater versatility compared to its Lunar Lake counterpart. It's expected to cater to a wider range of market segments and use cases. One notable advancement is the potential for increased memory capacity compared to Lunar Lake, which capped out at 32 GB of LPDDR5X memory running at 8533 MT/s. We can expect to hear more potentially at Intel's upcoming Innovation event in September, while general availability of Panther Lake is expected in late 2025 or early 2026.
Intel's Panther Lake CPU architecture uses an innovative design approach, utilizing a multi-tile configuration. The processor incorporates five distinct tiles, with three playing active roles in its functionality. The central compute operations are handled by one "Die 4" tile with CPU and NPU, while "Die 1" is dedicated to platform control (PCD). Graphics processing is managed by "Die 5", leveraging Intel's Xe3 technology. Interestingly, two of the five tiles serve a primarily structural purpose. These passive elements are strategically placed to achieve a balanced, rectangular form factor for the chip. This design philosophy echoes a similar strategy employed in Intel's Lunar Lake processors. Panther Lake is poised to offer greater versatility compared to its Lunar Lake counterpart. It's expected to cater to a wider range of market segments and use cases. One notable advancement is the potential for increased memory capacity compared to Lunar Lake, which capped out at 32 GB of LPDDR5X memory running at 8533 MT/s. We can expect to hear more potentially at Intel's upcoming Innovation event in September, while general availability of Panther Lake is expected in late 2025 or early 2026.