News Posts matching #CPU

Return to Keyword Browsing

Intel Core i5-11400 Runs Without a Cooler Under Thermal Camera

Famous chip photographer Fritzchens Fritz has always surprised us with some awesome die shots of the latest processors. Today, he has prepared another interesting surprise for all technology enthusiasts. Mr. Fritz has managed to run Intel's Core i5-11400 "Rocket Lake" processor without any type of colling solution, and use a thermal camera to capture what is happening inside the silicon. As the Rocket Lake design is impossible to run at any low-power setting, the author has made some changes to get a sustained run from the CPU. For starters, he set the operating clock speed to the constant 800 MHz, with iGPU, AVX, and HyperThreading disabled. The VCCSA was offset by -0.200 mV and the memory speed was lowered to DDR4-1333 speed.

The results? Well, the CPU has managed to run some tests without a cooler, and the thermal camera shows us just how the CPU works. As a CPU core gets in use, a thermal camera picks it up and we can see a core sort of spiking. Its temperature increases and it becomes distinctive from the rest of the die. After some time, the CPU became unusable, which is to be expected given that Rocket Lake's power-hungry design managed to survive quite a long time without any sufficient cooling.
You can check out the YouTube video below and see the magic happen.

Minisforum Announces EliteMini TL50 with Intel Tiger Lake-U and Thunderbolt 4

EliteMini TL50 is an ultra-compact and high-performance mini PC specially designed for home and office use. Equipped with Intel 11th generation CPU and Intel Iris Xe graphics. Intel Wi-Fi 6 & triple output, upgrade-friendly & windows 10 pro pre-installed.

TL50 comes with Intel Core i5-1135G7 processor (Tiger Lake), 4 cores/8 threads, backed up by Intel Iris Xe graphics, with 8M Cache, max turbo frequency up to 4.20 GHz. It is 20% faster than its predecessor with more cache memory, DDR4-3200 memory and PCIe 4.0 support. Not only ordinary work but also a little heavy games and video editing can be done comfortably.

Intel Iris Xe First Discrete GPU (DG1) Goes on Sale with CyberPowerPC Gaming System

The discrete GPU market has been a duopoly for quite some time, and when Intel announced that the company is rebooting plans for its discrete GPU lineup, another player was about to break that duopoly. Today, that has been changed forever and Intel has officially become the third manufacturer of discrete GPUs, as we can see on the online listing. On BestBuy, CyberPowerPC has listed "Gamer Xtreme Gaming Desktop" powered exclusively by Intel components. When it comes to the CPU choice, Intel's 6C/12T Core i5-11400F CPU model is present without iGPU. Now comes the interesting part. The GPU powering the system is Intel Iris Xe discrete graphics card, which is a DG1 GPU based on Xe-LP SKU.

This model features 80 EUs, resulting in 640 shading units. While this is not any gaming beast, casual 1080p gaming should be just fine on this configuration. The system is listed for 750 US Dollars, and it is sold out, as of the time of writing this. While the performance of this configuration may not be something monumental, it is an important step towards Intel's inclusion in the discrete GPU market. By using OEMs, the GPU will reach a very large market without any major problems. We are waiting to see the first reviews of the system, which will surely take a good look at the card and examine its performance.

Noctua Confirms That its Passive Cooler is "Coming Very Soon"

Noctua first teased their passive CPU cooler at Computex 2019 which weighed 1.5 kg and could handle processors with a TDP of 120 W passively and 180 W with quiet fans. Noctua had been planning to release a commercial version of the cooler in Q1 2021 but that date was pushed to Q2 2021 when Noctua updated its product roadmap in early 2021. Noctua has recently confirmed that this latest launch date is on schedule with an announcement that the cooler is "coming very soon" in response to a user on Twitter. The prototype featured mounting for AM4 and LGA 115x sockets with it keeping the Intel i9-9900K cool under load so we expect it will handle any consumer CPU.

InWin Launches BR Series AIO CPU Coolers with Block Fan Blower

InWin today announced its new BR Series AIO CPU Coolers with a built-in CPU block fan blower. The additional CPU block fan blower chills the upper motherboard area (UMA) up to 35 percent more than traditional AIO CPU coolers, ensuring the more powerful CPUs can be cooled and kept stable. The InWin BR24 and BR36 offer 240 mm and 360 mm radiator variants respectively and are bundled with high-performance Luna AL120 ARGB fans specially designed with higher static pressure.

High Performance AIO CPU Cooling
With outstanding AIO performance, the BR Series is tailored for all PC users, especially for those that operate frequently with higher loads, such as gamers, designers and content creators. High-density microchannel fins in the BR Series copper plate efficiently draw heat away from the CPU, minimizing the temperature delta to unlock maximum thermal headroom and overclocking performance. Its internal pump is designed to sit separately from the water block to minimize vibration and noise.

Two New Security Vulnerabilities to Affect AMD EPYC Processors

AMD processors have been very good at the field of security, on par with its main competitor, Intel. However, from time to time, researchers find new ways of exploiting a security layer and making it vulnerable to all kinds of attacks. Today, we have information that two new research papers are being published at this year's 15th IEEE Workshop on Offensive Technologies (WOOT'21) happening on May 27th. Both papers are impacting AMD processor security, specifically, they show how AMD's Secure Encrypted Virtualization (SEV) is compromised. Researchers from the Technical University of Munich and the University of Lübeck are going to present their papers on CVE-2020-12967 and CVE-2021-26311, respectfully.

While we do not know exact details of these vulnerabilities until papers are presented, we know exactly which processors are affected. As SEV is an enterprise feature, AMD's EPYC lineup is the main target of these two new exploits. AMD says that affected processors are all of the EPYC embedded CPUs and the first, second, and third generation of regular EPYC processors. For third-generation EPYC CPUs, AMD has provided mitigation in SEV-SNP, which can be enabled. For prior generations, the solution is to follow best security practices and try to avoid an exploit.
AMD EPYC Processor

AMD Embedded Roadmap Lists Zen 4 EPYC CPU with 64+ Cores

The AMD embedded roadmap for 2020 - 2023 was recently leaked and reveals some interesting information about AMD's upcoming Zen 4 based EPYC server processes. The current generation 7003 series of Zen 3 EPYC processors offer up to 64 cores and 128 threads with a TDP range of 120 W - 280 W. The next-generation EPYC 7004 "Genoa" Zen 4 processors will push the maximum core count to 96 cores and 192 threads with a maximum TDP of 320 W. The Zen 4 based EPYC processors will move to a 12 chiplet design up from the current 8 chiplet design which allows for the core increase that will increase the physical size of the processors and require a new SP5 socket. The new EPYC 7004 series processors will also support the latest features such as 12 channel DDR5-5200 ECC memory and PCIe Gen5.

Intel Alder Lake-S Engineering Sample Spotted with DDR5-4800 Memory Running DOTA 2

Intel's upcoming Alder Lake-S processors are going to be the company's first attempt at delivering heterogeneous core solutions, combining low-power and high-performance IPs in a single chip. Another important milestone that these processors will reach is DDR5 memory adoption, the first of its kind on consumer platforms. Today, thanks to CapFrameX, a monitoring tool that also hosts a database of benchmark runs, we have a piece of recorded information coming from a test system equipped with an Intel Alder Lake-S processor. The tested system spotted an engineering sample of the Alder Lake-S lineup, clocked at just 2.2 GHz. The core count and core configuration remained unknown.

Alongside the upcoming CPU, the system is composed of NVIDIA's GeForce RTX 3080 GPU and DDR5 memory running at 4800 MHz. There were four sticks present, each having 8 GB capacity. The leaked system was running the DOTA 2 game at an average of 119.98 FPS, which doesn't mean much, given that we don't know which settings were applied and what was the resolution. There is a chart showing the gaming frame rate and frame time, which could be interesting to look at. However, the only new information we have come to know is that the Alder Lake-S is already capable of playing games and the ecosystem support should be very good at launch.

Intel Xe-HPG DG2 GPU Specifications Leak, First GPUs are Coming in H2 2021 in Alder Lake-P Laptops

Yesterday, we got information that Intel's upcoming DG2 discrete graphics card is "right around the corner". That means that we are inching closer to the launch of Intel's discrete GPU offerings, and we are going to get another major player in the current GPU market duopoly. Today, however, we are in luck because Igor from Igor's LAB has managed to get ahold of the specifications of Intel's Xe-HPG DG2 graphics card. For starters, it is important to note that DG2 GPU will first come to laptops later this year. More precisely, laptops powered by Alder Lake-P processors will get paired with DG2 discrete GPU in the second half of 2021. The CPU and GPU will connect using the PCIe 4.0 x12 link as shown in the diagram below, where the GPU is paired with the Tiger Lake-H processor. The GPU has its subsystem that handles the IO as well.

Intel Ponte Vecchio GPU Scores Another Win in Leibniz Supercomputing Centre

Today, Lenovo in partnership with Intel has announced that Leibniz Supercomputing Centre (LRZ) is building a supercomputer powered by Intel's next-generation technologies. Specifically, the supercomputer will use Intel's Sapphire Rapids CPUs in combination with the highly-teased Ponte Vecchio GPUs to power the applications running at Leibniz Supercomputing Centre. Along with the various processors, the LRZ will also deploy Intel Optane persistent memory to process the huge amount of data the LRZ has and is producing. The integration of HPC and AI processing will be enabled by the expansion of LRZ's current supercomputer called SuperMUG-NG, which will receive an upgrade in 2022, which will feature both Sapphire Rapids and Ponte Vecchio.

Mr. Raja Koduri, Intel graphics guru, has on Twitter teased that this supercomputer installment will represent a combination of Sapphire Rapids, Ponte Vecchio, Optane, and One API all in one machine. The system will use over one petabyte of Distributed Asynchronous Object Storage (DAOS) based on the Optane technologies. Then, Mr. Koduri has teased some Ponte Vecchio eye candy, which is a GIF of tiles combining to form a GPU, which you can check out here. You can also see some pictures of Ponte Vecchio below.
Intel Ponte Vecchio GPU Intel Ponte Vecchio GPU Intel Ponte Vecchio GPU Intel Ponte Vecchio GPU

Intel Core-1800 Alder Lake Engineering Sample Spotted with 16C/24T Configuration

Intel's upcoming Alder Lake generation of processors is going to be the first iteration of heterogeneous x86 architecture. That means that Intel will for the first time combine smaller, low-power cores, with some big high-performance cores to provide the boost to all the workloads. If a task doesn't need much power, as some background task, for example, the smaller cores are used. And if you need to render something or you want to fire up a game, big cores are used to provide the power needed for the tasks. Intel has decided to provide such an architecture on the advanced 10 nm SuperFin, which represents a major upgrade over the existing 14 nm process.

Today, we got some information from Igor's Lab, showing the leaked specification of the Intel Core-1800 processor engineering sample. While this may not represent the final name, we see that the leaked information shows that the processor is B0 stepping. That means that the CPU will see more changes when the final sample arrives. The CPU has 16 cores with 24 threads. Eight of those cores are big ones with hyperthreading, while the remaining 8 are smaller Atom cores. They are running at the base clock of 1800 MHz, while the boost speeds are 4.6 GHz with two cores, 4.4 GHz with four cores, and 4.2 GHz with 6 cores. When all cores are used, the boost speed is locked at 4.0 GHz. The CPU has a PL1 TDP of 125 Watts, while the PL2 configuration boosts the TDP to 228 Watts. The CPU was reportedly running at 1.3147 Volts during the test. You can check out the complete datasheet below.

GIGABYTE Launches AORUS Model S and Model X Gaming Desktops Powered by Intel 11th Generation Processors

GIGABYTE TECHNOLOGY Co. Ltd, a leading manufacturer of motherboards and graphics cards, today presented two gaming systems of Intel Z590 platform with AORUS MODEL X and mini system AORUS MODEL S, which adopt the top-notch components and materials for extreme performance. Enhanced by the strict verification and leading technology, GIGABYTE provides the PC system of premium performance with optimized heat dissipation and acoustic control. The system maintains cool and quiet even under the overclocking, which balance the high performance and low temperature to keep the system acoustic under 40dB without throttling. Furthermore, the three-year warranty of full system offers reassuring and comprehensive service for users.

"When tackling the uplift of PC performance, multi-core, high frequency, and copious storage become a standard to the premium PC platform, as well as how to make the best components matrix to provide the optimized performance with reliability turns into more inevitable." indicated by Eddie Lin, Vice President of the GIGABYTE Channel Solutions. "The new AORUS system is well-tempered by multiple verification and tuning of GIGABYTE's R&D team, which provide a perfect match of cool, quiet, and powerful performance with optimized compatibility, Expandability, and three-year warranty of whole system.

TSMC Employs AMD EPYC CPUs for Mission-Critical Manufacturing

Taiwan Semiconductor Manufacturing Company, the maker of various kinds of silicon products, is the manufacturer of AMD's EPYC processors. However, have you ever questioned what CPUs are actually behind TSMC? The answer to that question is quite simple. Today, we have come to know that TSMC is using AMD EPYC processors to power their manufacturing infrastructure and tape out thousands of wafers per month. AMD has published TSMC's case study, which pointed out that the total cost of ownership has been the main challenge of the Taiwanese company. By using AMD EPYC 7702P and 7F72 CPUs, TSMC addresses the need for both reliable and high-performing server infrastructure to power the manufacturing efforts. For research and development purposes, TSMC chose the 7F72 with 24 cores and a high clock speed of 3.2 GHz, which is ideal for the company needs and purposes.

For more details about TSMC's choices and solutions, read the case study here.

AMD Reports First Quarter 2021 Financial Results

AMD (NASDAQ:AMD) today announced revenue for the first quarter of 2021 of $3.45 billion, operating income of $662 million, net income of $555 million and diluted earnings per share of $0.45. On a non-GAAP* basis, operating income was $762 million, net income was $642 million and diluted earnings per share was $0.52.

"Our business continued to accelerate in the first quarter driven by the best product portfolio in our history, strong execution and robust market demand," said Dr. Lisa Su, AMD president and CEO. "We had outstanding year-over-year revenue growth across all of our businesses and data center revenue more than doubled. Our increased full-year guidance highlights the strong growth we expect across our business based on increasing adoption of our high-performance computing products and expanding customer relationships."

Arm Announces Neoverse N2 and V1 Server Platforms

The demands of data center workloads and internet traffic are growing exponentially, and new solutions are needed to keep up with these demands while reducing the current and anticipated growth of power consumption. But the variety of workloads and applications being run today means the traditional one-size-fits all approach to computing is not the answer. The industry demands flexibility; design freedom to achieve the right level of compute for the right application.

As Moore's Law comes to an end, solution providers are seeking specialized processing. Enabling specialized processing has been a focal point since the inception of our Neoverse line of platforms, and we expect these latest additions to accelerate this trend.

YouTube Updates Server Infrastructure With Custom ASICs for Video Transcoding

Video streaming is looking a bit like magic. The uploader sends a video to one platform in one resolution and encoding format, while the viewer requests a video in a specific resolution and encoding format used by the device the video is streamed on. YouTube knows this best, as it represents the world's largest video platform with over 2 billion users visiting the platform each month. That takes a massive load on the server infrastructure over at Google's data centers that host the service. There is about 500 hours worth of video content uploaded to the platform every minute, and regular hardware isn't being enough anymore to handle everything.

That is why YouTube has developed custom chips, ASICs, that are called VCUs or Video (trans)Coding Units. In Google data centers, there is a large problem with transcoding. Each video needs to adapt to the streaming platform and desired specifications, and doing that on regular hardware is a problem. By using ASIC devices, such as VCUs, Google can keep up with the demand and deliver the best possible quality. Codenamed Argos, the chip can deliver 20-33x improvement in efficiency compared to the regular server platform. In data centers, the VCU is implemented as a regular PCIe card, with two chips under the heatsinks.

Tenstorrent Selects SiFive Intelligence X280 for Next-Generation AI Processors

SiFive, Inc., the industry leader in RISC-V processors and silicon solutions, today announced that Tenstorrent, an AI semiconductor and software start-up developing next-generation computers, will license the new SiFive Intelligence X280 processor in its AI training and inference processor. SiFive will deliver more details of its SiFive Intelligence initiative including the SiFive Intelligence X280 processor at the Linley Spring Processor Conference on April 23rd.

Tenstorrent's novel approach to inference and training effectively and efficiently accommodates the exponential growth in the size of machine learning models while offering best-in-class performance.

AMD X570S Motherboard Spotted Alongside Ryzen 7 5700G APU

AMD seems to be preparing a chipset refresh, and this time, it is coming straight from the top-end market. When the company launched its high-end X570 chipset, it brought the PCIe 4.0 support, which many praised due to its capability to handle much faster NVMe drives. However, it seems like the company is not satisfied with that and it needs to release an updated chipset version called X570S. According to a popular hardware leaker, TUM_APISAK, we have discovered that GIGABYTE is preparing X570S Aorus Pro AX motherboard that will use the refreshed chipset. GIGABYTE already listed several Eurasian Economic Commission (EEC) listings, so the new chipset is sure to hit the market, just at an unknown time.

The S denotes the word silent, meaning that these updated chipsets are capable of working with passive cooling and possibly having a lower TDP compared to 11 and 15 Watts of the X570 chipsets for consumer and enterprise motherboards, respectively. The test was conducted using AMD's newly announced Ryzen 7 5700G processor. The 5000-series of APUs are so far limited to OEMs, so one would guess that GIGABYTE itself made the leak by using a public entry of CPU-Z validation.

Foundry Revenue Projected to Reach Historical High of US$94.6 Billion in 2021 Thanks to High 5G/HPC/End-Device Demand, Says TrendForce

As the global economy enters the post-pandemic era, technologies including 5G, WiFi6/6E, and HPC (high-performance computing) have been advancing rapidly, in turn bringing about a fundamental, structural change in the semiconductor industry as well, according to TrendForce's latest investigations. While the demand for certain devices such as notebook computers and TVs underwent a sharp uptick due to the onset of the stay-at-home economy, this demand will return to pre-pandemic levels once the pandemic has been brought under control as a result of the global vaccination drive. Nevertheless, the worldwide shift to next-gen telecommunication standards has brought about a replacement demand for telecom and networking devices, and this demand will continue to propel the semiconductor industry, resulting in high capacity utilization rates across the major foundries. As certain foundries continue to expand their production capacities this year, TrendForce expects total foundry revenue to reach a historical high of US$94.6 billion this year, an 11% growth YoY.

CPU-Z Enables Preliminary Support for Intel Alder Lake CPUs

CPU-Z, the CPU monitoring tool used to gather information about the processor your system is running on, has been updated with version 1.96. This new update doesn't change the software much but rather brings support for new hardware. Starting from this revision, Intel's upcoming Alder Lake CPUs have received preliminary support in the tool. To go along with CPUs, the software is now also enabled to recognize Intel's Z6xx motherboards that pair with Alder Lake processors. Alongside that, the software now also brings support for next-generation DDR5 memory, which is supposed to feature speeds anywhere from 4800 to 8400 MT/s. When it comes to AMD, the tool received an update that enables it to read information about AMD's Ryzen 5700G, 5600G, and 5300G APUs, and Radeon RX 6900 XT, 6800 (& XT), 6700 XT GPUs.
Download CPU-Z Version 1.96 Here.

Intel CEO on NVIDIA CPUs: They Are Responding to Us

NVIDIA has recently announced the company's first standalone Grace CPU that will come out as a product in 2023. NVIDIA has designed Grace on Arm ISA, likely ARM v9, to represent a new way that data centers are built and deliver a whole new level of HPC and AI performance. However, the CPU competition in a data center space is considered one of the hardest markets to enter. Usually, the market is a duopoly between Intel and AMD, which supply x86 processors to server vendors. In the past few years, there have been few Arm CPUs that managed to enter the data canter space, however, NVIDIA is aiming to deliver much more performance and grab a bigger piece of the market.

As a self-proclaimed leader in AI, Intel is facing hard competition from NVIDIA in the coming years. In an interview with Fortune, Intel's new CEO Pat Gelsinger has talked about NVIDIA and how the company sees the competition between the two. Mr. Gelsinger is claiming that Intel is a leader in CPUs that feature AI acceleration built in the chip and that they are not playing defense, but rather offense against NVIDIA. You can check out the whole quote from the interview below.

OpenFive Tapes Out SoC for Advanced HPC/AI Solutions on TSMC 5 nm Technology

OpenFive, a leading provider of customizable, silicon-focused solutions with differentiated IP, today announced the successful tape out of a high-performance SoC on TSMC's N5 process, with integrated IP solutions targeted for cutting edge High Performance Computing (HPC)/AI, networking, and storage solutions.

The SoC features an OpenFive High Bandwidth Memory (HBM3) IP subsystem and D2D I/Os, as well as a SiFive E76 32-bit CPU core. The HBM3 interface supports 7.2 Gbps speeds allowing high throughput memories to feed domain-specific accelerators in compute-intensive applications including HPC, AI, Networking, and Storage. OpenFive's low-power, low-latency, and highly scalable D2D interface technology allows for expanding compute performance by connecting multiple dice together using an organic substrate or a silicon interposer in a 2.5D package.

AMD Launches Ryzen 5000G "Cezanne" APU Lineup for OEMs

AMD has today decided to launch the next generation of Accelerated Processing Units (APUs), now in form of the 5000G lineup codenamed Cezanne. The APUs are getting launched as OEM-exclusive products for now, which means that only manufacturers like Dell, HP, Lenovo, etc. can have access to them. AMD is set to announce these processors for wider masses, such as consumer DIYers, later this year. So you must be wondering what is new about the 5000G APUs. For starters, the new APUs feature AMD's improved Zen 3 core with a notable IPC boost over Zen 2 found in last generation 4000G APUs. When it comes to graphics, the new APUs feature anywhere from 6-8 GPU cores, based on the Vega architecture.

When it comes to the available models, AMD lists six SKUs, all differentiating in CPU/GPU core count, TDP, and frequency. There are three regular SKUs, with their power-efficient variants. The regular SKUs are AMD Ryzen 7 5700G, Ryzen 5 5600G, and Ryzen 3 5300G. They are normal SKUs that have a TDP of 65 Watts, meaning a higher base frequency needing a more adequate cooling solution. However, as there are regular SKUs, there are also power-efficient, TDP-constrained models present. Called the AMD Ryzen 7 5700GE, Ryzen 5 5600GE, and Ryzen 3 5300GE, these models bring the TDP down to 35 Watts and reduce base frequency by a couple of hundreds of MHz.

NVIDIA and Global Computer Makers Launch Industry-Standard Enterprise Server Platforms for AI

NVIDIA today introduced a new class of NVIDIA-Certified Systems, bringing AI within reach for organizations that run their applications on industry-standard enterprise data center infrastructure. These include high-volume enterprise servers from top manufacturers, which were announced in January and are now certified to run the NVIDIA AI Enterprise software suite—which is exclusively certified for VMware vSphere 7, the world's most widely used compute virtualization platform.

Further expanding the NVIDIA-Certified servers ecosystem is a new wave of systems featuring the NVIDIA A30 GPU for mainstream AI and data analytics and the NVIDIA A10 GPU for AI-enabled graphics, virtual workstations and mixed compute and graphics workloads, also announced today.

NVIDIA Extends Data Center Infrastructure Processing Roadmap with BlueField-3 DPU

NVIDIA today announced the NVIDIA BlueField -3 DPU, its next-generation data processing unit, to deliver the most powerful software-defined networking, storage and cybersecurity acceleration capabilities available for data centers.

The first DPU built for AI and accelerated computing, BlueField-3 lets every enterprise deliver applications at any scale with industry-leading performance and data center security. It is optimized for multi-tenant, cloud-native environments, offering software-defined, hardware-accelerated networking, storage, security and management services at data-center scale.
Return to Keyword Browsing
Dec 26th, 2024 00:24 EST change timezone

New Forum Posts

Popular Reviews

Controversial News Posts