News Posts matching #IFS

Return to Keyword Browsing

Intel Foundry Announces Reference Workflows from Ansys, Cadence, Siemens, and Synopsys

Today marks a new milestone in the growth of Intel Foundry's design ecosystem as key partners Ansys, Cadence, Siemens, and Synopsys have announced the availability of reference flows for Intel's embedded multi-die interconnect bridge (EMIB) advanced packaging technology. This comes on the heels of recent announcements where those same partners declared readiness for Intel 18A designs. "Today's news shows how Intel Foundry continues to combine the best of Intel with the best of our ecosystem to help our customers realize their AI systems ambitions," said Suk Lee, vice president for Ecosystem Development, Intel Foundry.

The success of Intel Foundry is rooted in collaboration with a vibrant design ecosystem. This ensures customers can access our leading process and packaging technologies. Now, in collaboration with our ecosystem partners, we are making it as easy and as fast as possible for companies to optimize, fabricate and assemble their system-on-chip designs through our foundries, while enabling their designers with validated EDA tools, design flows and IP portfolios for silicon-through-package design. This systems foundry approach allows our customers to innovate at every layer of the stack so they can meet the complex computing demands of the AI era, where chip architectures increasingly rely on multiple CPUs, GPUs and NPUs in a package to achieve performance requirements.

Intel Outlines New Financial Reporting Structure

Intel Corporation today outlined a new financial reporting structure that is aligned with the company's previously announced foundry operating model for 2024 and beyond. This new structure is designed to drive increased cost discipline and higher returns by providing greater transparency, accountability and incentives across the business. To support the new structure, Intel provided recast operating segment financial results for the years 2023, 2022 and 2021. The company also shared a targeted path toward long-term growth and profitability of Intel Foundry, as well as clear goals for driving financial performance improvement and shareholder value creation.

"Intel's differentiated position as both a world-class semiconductor manufacturer and a fabless technology leader creates significant opportunities to drive long-term sustainable growth across these two complementary businesses," said Pat Gelsinger, Intel CEO. "Implementing this new model marks a key achievement in our IDM 2.0 transformation as we hone our execution engine, stand up the industry's first and only systems foundry with geographically diverse leading-edge manufacturing capacity, and advance our mission to bring AI Everywhere."

Global Top 10 Foundries Q4 Revenue Up 7.9%, Annual Total Hits US$111.54 Billion in 2023

The latest TrendForce report reveals a notable 7.9% jump in 4Q23 revenue for the world's top ten semiconductor foundries, reaching $30.49 billion. This growth is primarily driven by sustained demand for smartphone components, such as mid and low-end smartphone APs and peripheral PMICs. The launch season for Apple's latest devices also significantly contributed, fueling shipments for the A17 chipset and associated peripheral ICs, including OLED DDIs, CIS, and PMICs. TSMC's premium 3 nm process notably enhanced its revenue contribution, pushing its global market share past the 60% threshold this quarter.

TrendForce remarks that 2023 was a challenging year for foundries, marked by high inventory levels across the supply chain, a weak global economy, and a slow recovery in the Chinese market. These factors led to a downward cycle in the industry, with the top ten foundries experiencing a 13.6% annual drop as revenue reached just $111.54 billion. Nevertheless, 2024 promises a brighter outlook, with AI-driven demand expected to boost annual revenue by 12% to $125.24 billion. TSMC, benefiting from steady advanced process orders, is poised to far exceed the industry average in growth.

Intel CEO Discloses TSMC Production Details: N3 for Arrow Lake & N3B for Lunar Lake

Intel CEO Pat Gelsinger engaged with press/media representatives following the conclusion of his IFS Direct Connect 2024 keynote speech—when asked about Team Blue's ongoing relationship with TSMC, he confirmed that their manufacturing agreement has advanced from "5 nm to 3 nm." According to a China Times news article: "Gelsinger also confirmed the expansion of orders to TSMC, confirming that TSMC will hold orders for Intel's Arrow and Lunar Lake CPU, GPU, and NPU chips this year, and will produce them using the N3B process, officially ushering in the Intel notebook platform that the outside world has been waiting for many years." Past leaks have indicated that Intel's Arrow Lake processor family will have CPU tiles based on their in-house 20A process, while TSMC takes care of the GPU tile aspect with their 3 nm N3 process node.

That generation is expected to launch later this year—the now "officially confirmed" upgrade to 3 nm should produce pleasing performance and efficiency improvements. The current crop of Core Ultra "Meteor Lake" mobile processors has struggled with the latter, especially when compared to rivals. Lunar Lake is marked down for a 2025 launch window, so some aspects of its internal workings remain a mystery—Gelsinger has confirmed that TSMC's N3B is in the picture, but no official source has disclosed their in-house manufacturing choice(s) for LNL chips. Wccftech believes that Lunar Lake will: "utilize the same P-Core (Lion Cove) and brand-new E-Core (Skymont) core architecture which are expected to be fabricated on the 20A node. But that might also be limited to the CPU tile. The GPU tile will be a significant upgrade over the Meteor Lake and Arrow Lake CPUs since Lunar Lake ditches Alchemist and goes for the next-gen graphics architecture codenamed "Battlemage" (AKA Xe2-LPG)." Late January whispers pointed to Intel and TSMC partnering up on a 2 nanometer process for the "Nova Lake" processor generation—perhaps a very distant prospect (2026).

Intel to Make its Most Advanced Foundry Nodes Available even to AMD, NVIDIA, and Qualcomm

Intel CEO Pat Gelsinger, speaking at the Intel Foundry Services (IFS) Direct Connect event, confirmed to Tom's Hardware that he hopes to turn IFS into the West's premier foundry company, and a direct technological and volume rival to TSMC. He said that there is a clear line of distinction between Intel Products and Intel Foundry, and that later this year, IFS will be more legally distinct from Intel, becoming its own entity. The only way Gelsinger sees IFS being competitive to TSMC, is by making its most advanced semiconductor manufacturing nodes and 3D chip packaging innovations available to foundry customers other than itself (Intel Products), even if it means providing them to companies that directly compete with Intel products, such as AMD and Qualcomm.

Paul Alcorn of Tom's Hardware asked CEO Gelsinger "Intel will now offer its process nodes to some of its competitors, and there may be situations wherein your product teams are competing directly with competitors that are enabled by your crown jewels. How do you plan to navigate those types of situations and maybe soothe ruffled feathers on your product teams?" To this, Gelsinger responded "Well, if you go back to the picture I showed today, Paul, there are Intel products and Intel foundry, There's a clean line between those, and as I said on the last earnings call, we'll have a setup separate legal entity for Intel foundry this year," Gelsinger responded. "We'll start posting separate financials associated with that going forward. And the foundry team's objective is simple: Fill. The. Fabs. Deliver to the broadest set of customers on the planet."

Intel Foundry Services (IFS) and Cadence Design Systems Expand Partnership on SoC Design

Intel Foundry Services (IFS) and Cadence Design Systems Inc. today announced a multiyear strategic agreement to jointly develop a portfolio of key customized intellectual property (IP), optimized design flows and techniques for Intel 18A process technology featuring RibbonFET gate-all-around transistors and PowerVia backside power delivery. Joint customers of the companies will be able to accelerate system-on-chip (SoC) project schedules on process nodes from Intel 18A and beyond while optimizing for performance, power, area, bandwidth and latency for demanding artificial intelligence, high performance computing and premium mobile applications.

"We're very excited to expand our partnership with Cadence to grow the IP ecosystem for IFS and provide choice for customers," said Stuart Paann, Intel senior vice president and general manager of IFS. "We will leverage Cadence's world-class portfolio of leading IP and advanced design solutions to enable our customers to deliver high-volume, high-performance and power-efficient SoCs on Intel's leading-edge process technologies."

TSMC Overtakes Intel and Samsung to Become World's Largest Semiconductor Maker by Revenue

Taiwan Semiconductor Manufacturing Company (TSMC) has reached a significant milestone, overtaking Intel and Samsung to become the world's largest semiconductor maker by revenue. According to Taiwanese financial analyst Dan Nystedt, TSMC earned $69.3 billion in revenue in 2023, surpassing Intel's $63 billion and Samsung's $58 billion. This is a remarkable achievement for the Taiwanese chipmaker, which has historically lagged behind Intel and Samsung in terms of revenue despite being the world's largest semiconductor foundry. TSMC's meteoric rise has been fueled by the increased demand for everything digital - from PCs to game consoles - during the coronavirus pandemic in 2020, and AI demand in the previous year. With its cutting-edge production capabilities allowing it to manufacture chips using the latest process technologies, TSMC has pulled far ahead of Intel and Samsung and can now charge a premium for its services.

This is reflected in its financials. For the 6th straight quarter, TSMC's Q4 2023 revenue of $19.55 billion also beat Intel's $15.41 billion and Samsung's $16.42 billion chip division revenue. As the world continues its rapid transformation in the AI era of devices, TSMC looks set to hold on to its top position for the foreseeable future. Its revenue and profits will likely continue to eclipse those of historical giants like Intel and Samsung. However, a big contender is Intel Foundry Services, which is slowly starting to gain external customers. If IFS takes off and new customers start adopting Intel as their foundry of choice, team blue could regain leadership in the coming years.

Intel Reports Fourth-Quarter and Full-Year 2023 Financial Results

Intel Corporation today reported fourth-quarter and full-year 2023 financial results. "We delivered strong Q4 results, surpassing expectations for the fourth consecutive quarter with revenue at the higher end of our guidance," said Pat Gelsinger, Intel CEO. "The quarter capped a year of tremendous progress on Intel's transformation, where we consistently drove execution and accelerated innovation, resulting in strong customer momentum for our products. In 2024, we remain relentlessly focused on achieving process and product leadership, continuing to build our external foundry business and at-scale global manufacturing, and executing our mission to bring AI everywhere as we drive long-term value for stakeholders."

David Zinsner, Intel CFO, said, "We continued to drive operational efficiencies in the fourth quarter, and comfortably achieved our commitment to deliver $3 billion in cost savings in 2023. We expect to unlock further efficiencies in 2024 and beyond as we implement our new internal foundry model, which is designed to drive greater transparency and accountability and higher returns on our owners' capital." For the full year, the company generated $11.5 billion in cash from operations and paid dividends of $3.1 billion.

NVIDIA CFO Hints at Intel Foundry Services Partnership

NVIDIA CFO Colette Kress, responding to a question in the Q&A session of the recent UBS Global Technology Conference, hinted at the possibility of NVIDIA onboarding a third semiconductor foundry partner besides its current TSMC and Samsung, with the implication being Intel Foundry Services (IFS). "We would love a third one. And that takes a work of what are they interested in terms of the services. Keep in mind, there is other ones that may come to the U.S. TSMC in the U.S. may be an option for us as well. Not necessarily different, but again in terms of the different region. Nothing that stops us from potentially adding another foundry."

NVIDIA currently sources its chips from TSMC and Samsung. It uses the premier Taiwanese fab for its latest "Ada" GPUs and "Hopper" AI processors, while using Samsung for its older generation "Ampere" GPUs. The addition of IFS as a third foundry partner could improve the company's supply-chain resilience in an uncertain geopolitical environment; given that IFS fabs are predominantly based in the US and the EU.

Top 10 Foundries Experience 7.9% QoQ Growth in 3Q23, with a Continued Upward Trend Predicted for Q4

TrendForce's research indicates a dynamic third quarter for the global foundry industry, marked by an uptick in urgent orders for smartphone and notebook components. This surge was fueled by healthy inventory levels and the release of new iPhone and Android devices in 2H23. Despite persisting inflation risks and market uncertainties, these orders were predominantly executed as rush orders. Additionally, TSMC and Samsung's high-cost 3 nm manufacturing process had a positive impact on revenues, driving the 3Q23 value of the top ten global foundries to approximately US$28.29 billion—a 7.9% QoQ increase.

Looking ahead to 4Q23, the anticipation of year-end festive demand is expected to sustain the inflow of urgent orders for smartphones and laptops, particularly for smartphone components. Although the end-user market is yet to fully recover, pre-sales season stockpiling for Chinese Android smartphones appears to be slightly better than expected, with demand for mid-to-low range 5G and 4G phone APs and continued interest in new iPhone models. This scenario suggests a continued upward trend for the top ten global foundries in Q4, potentially exceeding the growth rate seen in Q3.

Intel to Start High-Volume EUV Production in Ireland, Intel 4 Node Enters Mass-production

Intel Foundry Services (IFS) today announced that it will commence mass-production on its first silicon fabrication node that leverages extreme ultraviolet (EUV) lithography, Intel 4. On September 29, the Intel 4 node will start rolling at the company's facility in Leixlip, Ireland, dubbed Fab 34. CEO Pat Gelsinger, Dr. Ann Kelleher, general manager of Technology Development at Intel, and Keyvan Esfarjani, chief global operations officer, will be present at a ceremony commemorating production of the first wafers.

Intel 4 is an advanced foundry that leverages EUV, and offers both transistor densities and electrical characteristics comparable to TSMC's 5 nm-class and 4 nm-class foundry nodes. Among the first chips to be built are the compute tiles of the company's Core "Meteor Lake" processors, which contain their next-generation CPU cores. Compared to the current Intel 7 node, Intel 4 offers double the area scaling for logic libraries, a 20% iso-power improvement, and introduces the new metal-insulator-metal (MIM) capacitor.

Intel Foundry Services and Tower Semiconductor Announce New US Foundry Agreement

Intel Foundry Services (IFS) and Tower Semiconductor, a leading foundry for analog semiconductor solutions, today announced an agreement where Intel will provide foundry services and 300 mm manufacturing capacity to help Tower serve its customers globally. Under the agreement, Tower will utilize Intel's advanced manufacturing facility in New Mexico. Tower will invest up to $300 million to acquire and own equipment and other fixed assets to be installed in the New Mexico facility, providing a new capacity corridor of over 600,000 photo layers per month for Tower's future growth, enabling capacity to support forecasted customer demand for 300 mm advanced analog processing.

This agreement demonstrates the commitment from both Intel and Tower to expand their respective foundry footprints with unparalleled solutions and scaled capabilities. Intel will manufacture Tower's highly differentiated 65-nanometer power management BCD (bipolar-CMOS-DMOS) flows, among other flows at Intel's Fab 11X in Rio Rancho, New Mexico.

Intel Expects to Beat TSMC at 2nm, Intel Foundry to Operate Almost as a Separate Business

Intel's integrated device manufacturing (IDM) has been experiencing a lot of trouble in recent years, and the company is not a leading-edge semiconductor manufacturer, with TSMC taking the pole position. However, the new restructuring hopes to change some of the business operations to increase its efficiency and establish Intel as the go-to foundry for customers. David Zinsner, Executive Vice President and the Chief Financial Officer, alongside Jason Grebe, Corporate Vice President & GM of the Corporate Planning Group at Intel, joined investors to explain how IDM will transform into a next-generation business. Intel IDM, including Intel Foundry Services (IFS), will get a new operation model, which will put IDM as an almost separate business unit with its own profit and loss (P&L) statement published in the quarterly/yearly financial report.

According to Intel, the company's IDM 1.0 strategy has been serving it well, but IDM 2.0 is needed to build next-generation nodes as the capital required for them is massive. Intel hopes to regain node leadership with the Intel 18A node in 2025. The company's strategy is still to have IFS as the second biggest external foundry business, presumably just behind TSMC. Putting IDM into its own P&L will result in $8-10 billion in "cost reduction opportunities, " including ramp rates, test time, and sort times based on the market pricing, not Intel's pricing. At the start, IDM is expected o start with a negative operating margin. Intel also states that keeping IFS as a business unit allows the company to simultaneously develop products on it and de-risk it for customers who want to build on IFS. The company is developing five different products (assuming packaging) on Intel 18A, all of which will be available for customers to use as well.

RIKEN and Intel Collaborate on "Road to Exascale"

RIKEN and Intel Corporation (hereafter referred to as Intel) have signed a memorandum of understanding on collaboration and cooperation to accelerate joint research in next-generation computing fields such as AI (artificial intelligence), high-performance computing, and quantum computers. The signing ceremony was concluded on May 18, 2023. As part of this MOU, RIKEN will work with Intel Foundry Services (IFS) to prototype these new solutions.

Intel to Demonstrate PowerVia on E-Core Processor Built with Intel 4 Node

At VLSI Symposium 2023, scheduled to take place between June 11-16, Intel is set to demonstrate its PowerVia technology working efficiently on an E-Core chip built using the Intel 4 node. Conventional chips have power and signal interconnects distributed across multiple metal layers. PowerVia, on the other hand, dedicates specific layers for power delivery, effectively separating them from the signal routing layers. This approach allows for vertical power delivery through a set of power-specific Through-Silicon Vias (TSVs) or PowerVias, which are essentially vertical connections between the top and bottom surfaces of the chip. By delivering power directly from the backside of the chip, PowerVia reduces power supply noise and resistive losses, optimizing power distribution and improving overall energy efficiency. PowerVia is set to make a debut in 2024 with Intel 20A node.

For VLSI Symposium 2023 talk, the company has prepared a paper that highlights a design made using Intel 4 technology and implements E-Cores only in a test chip. The document states: "PowerVia Technology is a novel innovation to extend Process Scaling by having Power Delivery on the backside. This paper presents the pre and post silicon findings from implementing an Intel E-Core in PowerVia Technology. PowerVia enabled standard cell utilization of greater than 90 percent in large areas of the core while showing greater than 5 percent frequency benefit in silicon due reduced IR drop. Successful Post silicon debug is demonstrated with slightly higher but acceptable throughput times. The thermal characteristics of the PowerVia testchip is inline with higher power densities expected from logic scaling."

Intel Foundry and Arm Announce Multigeneration Collaboration on Leading-Edge SoC Design

Intel Foundry Services (IFS) and Arm today announced a multigeneration agreement to enable chip designers to build low-power compute system-on-chips (SoCs) on the Intel 18A process. The collaboration will focus on mobile SoC designs first, but allow for potential design expansion into automotive, Internet of Things (IoT), data center, aerospace and government applications. Arm customers designing their next-generation mobile SoCs will benefit from leading-edge Intel 18A process technology, which delivers new breakthrough transistor technologies for improved power and performance, and from IFS's robust manufacturing footprint that includes U.S.- and EU-based capacity.

"There is growing demand for computing power driven by the digitization of everything, but until now fabless customers have had limited options for designing around the most advanced mobile technology," said Pat Gelsinger, CEO of Intel Corporation. "Intel's collaboration with Arm will expand the market opportunity for IFS and open up new options and approaches for any fabless company that wants to access best-in-class CPU IP and the power of an open system foundry with leading-edge process technology."

Intel Appoints Stuart Pann to Lead Intel Foundry Services

Intel Corporation today announced the appointment of Stuart Pann as senior vice president and general manager of Intel Foundry Services (IFS), Intel's commercial foundry business. Pann will report to Intel CEO Pat Gelsinger and drive continued growth for IFS and its differentiated systems foundry offering, which goes beyond traditional wafer fabrication to include packaging, chiplet standards and software, as well as U.S.- and Europe-based capacity.

"The industry is responding well to our systems foundry approach and we're seeing strong momentum, including the recent announcement of a significant cloud, edge and data center solutions provider as a customer for our upcoming Intel 3 process," said Gelsinger. "With deep expertise in capital and capacity strategies, supply chain management, and sales and operations planning across internal and external manufacturing, Stuart is an ideal leader to accelerate this momentum and drive long-term growth for IFS."

Intel Foundry Services Allegedly Working on Test Chips for 43 Potential Customers

A new story is making the rounds, citing Wang Rui, chair Intel China, in the media in both China and Taiwan, claiming that Intel is working on test chips for as many as 43 potential customers for Intel Foundry Services (IFS). At least seven of those potential customers are said to be from the top 10 foundry clients globally. This sounds a bit too good to be true, considering that IFS has as yet to prove that they can deliver on their promises.

Furthermore, Wang Rui is meant to have gone on record, saying that IFS has taped out products on both its 20A and 18A nodes. Exactly what these products are, wasn't divulged, but as the 18A node isn't expected to go into mass production until the second half of 2024, this sounds a little bit too good to be true. What makes this even less believable is that the Intel 4 node is only set to go into mass production in the second half this year and before Intel moves to its Ångström nodes, the company still has to deliver on its Intel 3 node. The Intel China chair is also reportedly confident that Intel will be returning to a leading foundry position by 2025.

More Details Emerge on Mediatek's Intel Foundry Plans

Last week's news about Mediatek signing an agreement to use Intel's Foundry Services (IFS) led to some speculation as to what Mediatek would be manufacturing at IFS. Details have now emerged in the Taiwan press about Mediatek's plans and the first products will be using the Intel 16 process, what was previously known as its 22 nm node. As such, we're not talking about anything cutting edge or even remotely close, but that's hardly a problem for Mediatek, as the company makes a vast range of products suitable for the node.

MediaTek CEO Rick Tsai mentioned that IFS will be used for producing semiconductors for digital TVs and wireless access networks at an investor conference in Taiwan. This suggests that most of the components might not even be for Mediatek itself, but rather its subsidiaries, such as MStar or Airoha. MStar is a company that produces a wide range of lower-end smart TV chips, whereas Airoha has ended up taking over Mediatek's networking and Bluetooth business units. Admittedly, Mediatek still has some of these types of products under its own brand, but these tend to be higher-end products that would require a more advanced node than 22 nm in most cases. Mediatek's move to IFS has raised concerns in Taiwan that the smaller foundries might be losing business from Mediatek over time, which means that UMC and PSMC are going to be on the losing end of this deal.

Microsoft Azure Joins Intel Foundry Services Cloud Alliance

The recent semiconductor shortage has put an unprecedented amount of focus on the industry. Both commercial and government entities have come to recognize the lack of advanced node semiconductor manufacturing capabilities onshore in the United States. Intel Foundry Services (IFS) entry into the commercial foundry space is poised to change all that. As part of IFS Accelerator program, Intel recently announced their new IFS Cloud Alliance program, with Microsoft Azure as one of the inaugural members.

This is the latest chapter in a partnership between Intel and Microsoft that stretches back decades all the way back to the early days of the personal computer. In the last few years, Intel and Microsoft have collaborated on advancing semiconductor design on the cloud by working together to bring out EDA centric cloud compute such as the FX series on Azure, working with EDA vendors to enhance their software to better take advantage of the elasticity of the Azure cloud, as well as collaborating on a secure cloud-based semiconductor development platform for the US Department of Defense RAMP and RAMP-C programs.

Intel Updates Technology Roadmap with Data Center Processors and Game Streaming Service

At Intel's 2022 Investor Meeting, Chief Executive Officer Pat Gelsinger and Intel's business leaders outlined key elements of the company's strategy and path for long-term growth. Intel's long-term plans will capitalize on transformative growth during an era of unprecedented demand for semiconductors. Among the presentations, Intel announced product roadmaps across its major business units and key execution milestones, including: Accelerated Computing Systems and Graphics, Intel Foundry Services, Software and Advanced Technology, Network and Edge, Technology Development, More: For more from Intel's Investor Meeting 2022, including the presentations and news, please visit the Intel Newsroom and Intel.com's Investor Meeting site.

Intel to Enter Third-Party Foundry Business, Set Up $20 Billion Fabs in Arizona

Intel will formally enter the third-party semiconductor foundry business under the Intel Foundry Services (IFS) brand, announced CEO Pat Gelsinger, on Tuesday. This entity would operate under a business model not unlike that of TSMC, with its latest foundry technologies available to third-party customers, besides Intel. The company hopes to become a major foundry service provider to U.S. and E.U. customers, particularly enterprise and government contractors that need secure semiconductor manufacturing on U.S. soil.

To this effect, Gelsinger announced that the company will invest $20 billion in the state of Arizona, to set up two semiconductor foundries. Intel could have an edge over other foundry companies as its foundry service portfolio includes Intel technologies as IP blocks. IFS will be led by semiconductor industry veteran Dr. Randhir Thakur, who will report directly to Pat Gelsinger. The $20 billion investment in Arizona, according to Intel, will generate over 3,000 high-skilled jobs, over 3,000 construction jobs, and approximately 15,000 local long-term jobs.
Return to Keyword Browsing
Nov 21st, 2024 07:26 EST change timezone

New Forum Posts

Popular Reviews

Controversial News Posts