News Posts matching #Llama 3.1

Return to Keyword Browsing

NVIDIA Blackwell Delivers Breakthrough Performance in Latest MLPerf Training Results

NVIDIA is working with companies worldwide to build out AI factories—speeding the training and deployment of next-generation AI applications that use the latest advancements in training and inference. The NVIDIA Blackwell architecture is built to meet the heightened performance requirements of these new applications. In the latest round of MLPerf Training—the 12th since the benchmark's introduction in 2018—the NVIDIA AI platform delivered the highest performance at scale on every benchmark and powered every result submitted on the benchmark's toughest large language model (LLM)-focused test: Llama 3.1 405B pretraining.

The NVIDIA platform was the only one that submitted results on every MLPerf Training v5.0 benchmark—underscoring its exceptional performance and versatility across a wide array of AI workloads, spanning LLMs, recommendation systems, multimodal LLMs, object detection and graph neural networks. The at-scale submissions used two AI supercomputers powered by the NVIDIA Blackwell platform: Tyche, built using NVIDIA GB200 NVL72 rack-scale systems, and Nyx, based on NVIDIA DGX B200 systems. In addition, NVIDIA collaborated with CoreWeave and IBM to submit GB200 NVL72 results using a total of 2,496 Blackwell GPUs and 1,248 NVIDIA Grace CPUs.

AnythingLLM App Best Experienced on NVIDIA RTX AI PCs

Large language models (LLMs), trained on datasets with billions of tokens, can generate high-quality content. They're the backbone for many of the most popular AI applications, including chatbots, assistants, code generators and much more. One of today's most accessible ways to work with LLMs is with AnythingLLM, a desktop app built for enthusiasts who want an all-in-one, privacy-focused AI assistant directly on their PC. With new support for NVIDIA NIM microservices on NVIDIA GeForce RTX and NVIDIA RTX PRO GPUs, AnythingLLM users can now get even faster performance for more responsive local AI workflows.

What Is AnythingLLM?
AnythingLLM is an all-in-one AI application that lets users run local LLMs, retrieval-augmented generation (RAG) systems and agentic tools. It acts as a bridge between a user's preferred LLMs and their data, and enables access to tools (called skills), making it easier and more efficient to use LLMs for specific tasks.

AMD Instinct GPUs are Ready to Take on Today's Most Demanding AI Models

Customers evaluating AI infrastructure today rely on a combination of industry-standard benchmarks and real-world model performance metrics—such as those from Llama 3.1 405B, DeepSeek-R1, and other leading open-source models—to guide their GPU purchase decisions. At AMD, we believe that delivering value across both dimensions is essential to driving broader AI adoption and real-world deployment at scale. That's why we take a holistic approach—optimizing performance for rigorous industry benchmarks like MLperf while also enabling Day 0 support and rapid tuning for the models most widely used in production by our customers.

This strategy helps ensure AMD Instinct GPUs deliver not only strong, standardized performance, but also high-throughput, scalable AI inferencing across the latest generative and language models used by customers. We will explore how AMD's continued investment in benchmarking, open model enablement, software and ecosystem tools helps unlock greater value for customers—from MLPerf Inference 5.0 results to Llama 3.1 405B and DeepSeek-R1 performance, ROCm software advances, and beyond.

MLCommons Releases New MLPerf Inference v5.0 Benchmark Results

Today, MLCommons announced new results for its industry-standard MLPerf Inference v5.0 benchmark suite, which delivers machine learning (ML) system performance benchmarking in an architecture-neutral, representative, and reproducible manner. The results highlight that the AI community is focusing much of its attention and efforts on generative AI scenarios, and that the combination of recent hardware and software advances optimized for generative AI have led to dramatic performance improvements over the past year.

The MLPerf Inference benchmark suite, which encompasses both datacenter and edge systems, is designed to measure how quickly systems can run AI and ML models across a variety of workloads. The open-source and peer-reviewed benchmark suite creates a level playing field for competition that drives innovation, performance, and energy efficiency for the entire industry. It also provides critical technical information for customers who are procuring and tuning AI systems. This round of MLPerf Inference results also includes tests for four new benchmarks: Llama 3.1 405B, Llama 2 70B Interactive for low-latency applications, RGAT, and Automotive PointPainting for 3D object detection.

NVIDIA Blackwell Takes Pole Position in Latest MLPerf Inference Results

In the latest MLPerf Inference V5.0 benchmarks, which reflect some of the most challenging inference scenarios, the NVIDIA Blackwell platform set records - and marked NVIDIA's first MLPerf submission using the NVIDIA GB200 NVL72 system, a rack-scale solution designed for AI reasoning. Delivering on the promise of cutting-edge AI takes a new kind of compute infrastructure, called AI factories. Unlike traditional data centers, AI factories do more than store and process data - they manufacture intelligence at scale by transforming raw data into real-time insights. The goal for AI factories is simple: deliver accurate answers to queries quickly, at the lowest cost and to as many users as possible.

The complexity of pulling this off is significant and takes place behind the scenes. As AI models grow to billions and trillions of parameters to deliver smarter replies, the compute required to generate each token increases. This requirement reduces the number of tokens that an AI factory can generate and increases cost per token. Keeping inference throughput high and cost per token low requires rapid innovation across every layer of the technology stack, spanning silicon, network systems and software.

NVIDIA & Partners Will Discuss Supercharging of AI Development at GTC 2025

Generative AI is redefining computing, unlocking new ways to build, train and optimize AI models on PCs and workstations. From content creation and large and small language models to software development, AI-powered PCs and workstations are transforming workflows and enhancing productivity. At GTC 2025, running March 17-21 in the San Jose Convention Center, experts from across the AI ecosystem will share insights on deploying AI locally, optimizing models and harnessing cutting-edge hardware and software to enhance AI workloads—highlighting key advancements in RTX AI PCs and workstations.

Develop and Deploy on RTX
RTX GPUs are built with specialized AI hardware called Tensor Cores that provide the compute performance needed to run the latest and most demanding AI models. These high-performance GPUs can help build digital humans, chatbots, AI-generated podcasts and more. With more than 100 million GeForce RTX and NVIDIA RTX GPUs users, developers have a large audience to target when new AI apps and features are deployed. In the session "Build Digital Humans, Chatbots, and AI-Generated Podcasts for RTX PCs and Workstations," Annamalai Chockalingam, senior product manager at NVIDIA, will showcase the end-to-end suite of tools developers can use to streamline development and deploy incredibly fast AI-enabled applications.

Meta Shows Open-Architecture NVIDIA "Blackwell" GB200 System for Data Center

During the Open Compute Project (OCP) Summit 2024, Meta, one of the prime members of the OCP project, showed its NVIDIA "Blackwell" GB200 systems for its massive data centers. We previously covered Microsoft's Azure server rack with GB200 GPUs featuring one-third of the rack space for computing and two-thirds for cooling. A few days later, Google showed off its smaller GB200 system, and today, Meta is showing off its GB200 system—the smallest of the bunch. To train a dense transformer large language model with 405B parameters and a context window of up to 128k tokens, like the Llama 3.1 405B, Meta must redesign its data center infrastructure to run a distributed training job on two 24,000 GPU clusters. That is 48,000 GPUs used for training a single AI model.

Called "Catalina," it is built on the NVIDIA Blackwell platform, emphasizing modularity and adaptability while incorporating the latest NVIDIA GB200 Grace Blackwell Superchip. To address the escalating power requirements of GPUs, Catalina introduces the Orv3, a high-power rack capable of delivering up to 140kW. The comprehensive liquid-cooled setup encompasses a power shelf supporting various components, including a compute tray, switch tray, the Orv3 HPR, Wedge 400 fabric switch with 12.8 Tbps switching capacity, management switch, battery backup, and a rack management controller. Interestingly, Meta also upgraded its "Grand Teton" system for internal usage, such as deep learning recommendation models (DLRMs) and content understanding with AMD Instinct MI300X. Those are used to inference internal models, and MI300X appears to provide the best performance per Dollar for inference. According to Meta, the computational demand stemming from AI will continue to increase exponentially, so more NVIDIA and AMD GPUs is needed, and we can't wait to see what the company builds.

NVIDIA Fine-Tunes Llama3.1 Model to Beat GPT-4o and Claude 3.5 Sonnet with Only 70 Billion Parameters

NVIDIA has officially released its Llama-3.1-Nemotron-70B-Instruct model. Based on META's Llama3.1 70B, the Nemotron model is a large language model customized by NVIDIA in order to improve the helpfulness of LLM-generated responses. NVIDIA uses fine-tuning structured data to steer the model and allow it to generate more helpful responses. With only 70 billion parameters, the model is punching far above its weight class. The company claims that the model is beating the current top models from leading labs like OpenAI's GPT-4o and Anthropic's Claude 3.5 Sonnet, which are the current leaders across AI benchmarks. In evaluations such as Arena Hard, the NVIDIA Llama3.1 Nemotron 70B is scoring 85 points, while GPT-4o and Sonnet 3.5 score 79.3 and 79.2, respectively. Other benchmarks like AlpacaEval and MT-Bench spot NVIDIA also hold the top spot, with 57.6 and 8.98 scores earned. Claude and GPT reach 52.4 / 8.81 and 57.5 / 8.74, just below Nemotron.

This language model underwent training using reinforcement learning from human feedback (RLHF), specifically employing the REINFORCE algorithm. The process involved a reward model based on a large language model architecture and custom preference prompts designed to guide the model's behavior. The training began with a pre-existing instruction-tuned language model as the starting point. It was trained on Llama-3.1-Nemotron-70B-Reward and HelpSteer2-Preference prompts on a Llama-3.1-70B-Instruct model as the initial policy. Running the model locally requires either four 40 GB or two 80 GB VRAM GPUs and 150 GB of free disk space. We managed to take it for a spin on NVIDIA's website to say hello to TechPowerUp readers. The model also passes the infamous "strawberry" test, where it has to count the number of specific letters in a word, however, it appears that it was part of the fine-tuning data as it fails the next test, shown in the image below.

SambaNova Launches Fastest AI Platform Based on Its SN40L Chip

SambaNova Systems, provider of the fastest and most efficient chips and AI models, announced SambaNova Cloud, the world's fastest AI inference service enabled by the speed of its SN40L AI chip. Developers can log on for free via an API today — no waiting list — and create their own generative AI applications using both the largest and most capable model, Llama 3.1 405B, and the lightning-fast Llama 3.1 70B. SambaNova Cloud runs Llama 3.1 70B at 461 tokens per second (t/s) and 405B at 132 t/s at full precision.

"SambaNova Cloud is the fastest API service for developers. We deliver world record speed and in full 16-bit precision - all enabled by the world's fastest AI chip," said Rodrigo Liang, CEO of SambaNova Systems. "SambaNova Cloud is bringing the most accurate open source models to the vast developer community at speeds they have never experienced before."
Return to Keyword Browsing
Jul 14th, 2025 15:09 CDT change timezone

New Forum Posts

Popular Reviews

TPU on YouTube

Controversial News Posts