News Posts matching #Samsung

Return to Keyword Browsing

Report Suggests Naver Siding with Samsung in $752 Million "Mach-1" AI Chip Deal

Samsung debuted its Mach-1 generation of AI processors during a recent shareholder meeting—the South Korean megacorp anticipates an early 2025 launch window. Their application-specific integrated circuit (ASIC) design is expected to "excel in edge computing applications," with a focus on low power and efficiency-oriented operating environments. Naver Corporation was a key NVIDIA high-end AI customer in South Korea (and Japan), but the leading search platform firm and creator of HyperCLOVA X LLM (reportedly) deliberated on an adoption alternative hardware last October. The Korea Economic Daily believes that Naver's relationship with Samsung is set to grow, courtesy of a proposed $752 million investment: "the world's top memory chipmaker, will supply its next-generation Mach-1 artificial intelligence chips to Naver Corp. by the end of this year."

Reports from last December indicated that the two companies were deep into the process of co-designing power-efficient AI accelerators—Naver's main goal is to finalize a product that will offer eight times more energy efficiency than NVIDIA's H100 AI accelerator. Naver's alleged bulk order—of roughly 150,000 to 200,000 Samsung Mach-1 AI chips—appears to be a stopgap. Industry insiders reckon that Samsung's first-gen AI accelerator is much cheaper when compared to NVIDIA H100 GPU price points—a per-unit figure of $3756 is mentioned in the KED Global article. Samsung is speculated to be shopping its fledgling AI tech to Microsoft and Meta.

Samsung Galaxy Book 5 Powered by Lunar Lake Surfaces on SANDRA Database

Samsung's next-generation Galaxy Book 5 Pro premium thin-and-light notebook is expected to incorporate Intel's upcoming Core Ultra "Lunar Lake" processor, and Arc Xe2 graphics, which "Lunar Lake" implements with its iGPU solution. Intel is expected to debut both "Lunar Lake" and "Battlemage" toward the end of 2024. A prototype of this Samsung notebook is already up and running, probably using engineering samples of the two chips. It came to light as keen-eyed enthusiasts noticed new benchmark entries on the SiSoft SANDRA online database. Here, the processor is shown featuring an 8-core (4P+4E) configuration, while the iGPU features a 4 Xe2 core configuration, which works out to 512 unified shaders. The P-cores of the CPU tick at 2.80 GHz, the E-cores at 1.65 GHz, and the iGPU at 1.85 GHz.

Samsung Demonstrates New CXL Capabilities and Introduces New Memory Module for Scalable, Composable Disaggregated Infrastructure

Samsung Electronics, a world leader in advanced semiconductor technology, unveiled the expansion of its Compute Express Link (CXL) memory module portfolio and showcased its latest HBM3E technology, reinforcing leadership in high-performance and high-capacity solutions for AI applications.

In a keynote address to a packed crowd at Santa Clara's Computer History Museum, Jin-Hyeok Choi, Corporate Executive Vice President, Device Solutions Research America - Memory at Samsung Electronics, along with SangJoon Hwang, Corporate Executive Vice President, Head of DRAM Product and Technology at Samsung Electronics, took the stage to introduce new memory solutions and discuss how Samsung is leading HBM and CXL innovations in the AI era. Joining Samsung on stage was Paul Turner, Vice President, Product Team, VCF Division at VMware by Broadcom and Gunnar Hellekson, Vice President and General Manager at Red Hat to discuss how their software solutions combined with Samsung's hardware technology is pushing the boundaries of memory innovation.

Samsung Announces the Galaxy Tab S6 Lite

Samsung Electronics today announced the Galaxy Tab S6 Lite (2024), a stylish tablet designed for both work and play. Paired with the high-precision S Pen and offering reliable performance power, the Galaxy Tab S6 Lite (2024) maximizes inspiration, ideas and output for students, young professionals and families alike.

"At Samsung, we understand that life is fast, work is dynamic and consumers need a device that can keep up with their busy everyday lifestyles," said Junho Park, VP and Head of the Galaxy Ecosystem Product Planning Team, MX Business at Samsung Electronics. "The Galaxy Tab S6 Lite (2024) and its S Pen are the ultimate companions for seamlessly blending productivity with entertainment and creativity, enabling people to do more of what they enjoy on the go."

Product Pages of Samsung 28 Gbps and 32 Gbps GDDR7 Chips Go Live

Samsung is ready with a GDDR7 memory chip rated at an oddly-specific 28 Gbps. This speed aligns with the reported default memory speeds of next-generation NVIDIA GeForce RTX "Blackwell" GPUs. The Samsung GDDR7 memory chip bearing model number K4VAF325ZC-SC28, pictured below, ticks at 3500 MHz, yielding 28 Gbps (GDDR7-effective) memory speeds, and comes with a density of 16 Gbit (2 GB). This isn't Samsung's only GDDR7 chip at launch, the company also has a 32 Gbps high performance part that it built in hopes that certain high-end SKUs or professional graphics cards may implement it. The 32 Gbps GDDR7 chip, bearing the chip model number K4VAF325ZC-SC32, offers the same 16 Gbit density, but at a higher 4000 MHz clock. The Samsung website part-identification pages for both chips say that the parts are sampling to customers, which is usually just before it enters mass-production, and is marked "shipping."

Samsung Introduces "Petabyte SSD as a Service" at GTC 2024, "Petascale" Servers Showcased

Leaked Samsung PBSSD presentation material popped up online a couple of days prior to the kick-off day of NVIDIA's GTC 2024 conference (March 18)—reports (at the time) jumped on the potential introduction of a "petabyte (PB)-level SSD solution," alongside an enterprise subscription service for the US market. Tom's Hardware took the time to investigate this matter—in-person—on the showroom floor up in San Jose, California. It turns out that interpretations of pre-event information were slightly off—according to on-site investigations: "despite the name, PBSSD is not a petabyte-scale solid-state drive (Samsung's highest-capacity drive can store circa 240 TB), but rather a 'petascale' storage system that can scale-out all-flash storage capacity to petabytes."

Samsung showcased a Supermicro Petascale server design, but a lone unit is nowhere near capable of providing a petabyte of storage—the Tom's Hardware reporter found out that the demonstration model housed: "sixteen 15.36 TB SSDs, so for now the whole 1U unit can only pack up to 245.76 TB of 3D NAND storage (which is pretty far from a petabyte), so four of such units will be needed to store a petabyte of data." Company representatives also had another Supermicro product at their booth: "(an) H13 all-flash petascale system with CXL support that can house eight E3.S SSDs (with) four front-loading E3.S CXL bays for memory expansion."

AMD 24.3.1 Drivers Unlock RX 7900 GRE Memory OC Limits, Additional Performance Boost Tested

Without making much noise, AMD lifted the memory overclocking limits of the Radeon RX 7900 GRE graphics card with its latest Adrenalin 24.3.1 WHQL drivers, TechPowerUp found. The changelog is a bit vague and states "The maximum memory tuning limit may be incorrectly reported on AMD Radeon RX 7900 GRE graphics products."—we tested it. The RX 7900 GRE has been around since mid-2023, but gained prominence as the company gave it a global launch in February 2024, to help AMD better compete with the NVIDIA GeForce RTX 4070 Super. Before this, the RX 7900 GRE had started out its lifecycle as a special edition product confined to China, and its designers had ensured that it came with just the right performance positioning that didn't end up disrupting other products in the AMD stack. One of these limitations had to do with the memory overclocking potential, which was probably put in place to ensure that the RX 7900 GRE has a near-identical total board power as the RX 7800 XT.

Shortly after the global launch of the RX 7900 GRE, and responding to drama online, AMD declared the limited memory overclocking range a bug and promised a fix. The overclocking limits are defined in the graphics card VBIOS, so increasing those limits would mean shipping BIOS updates for over a dozen SKUs from all the major vendors, and requiring users to upgrade it by themselves. Such a solution isn't very practical, so AMD implemented a clock limit override in their new drivers, which reprograms the power limits on the GPU during boot-up. Nicely done, good job AMD!

Samsung Roadmaps UFS 5.0 Storage Standard, Predicts Commercialization by 2027

Mobile tech tipster, Revegnus, has highlighted an interesting Samsung presentation slide—according to machine translation, the company's electronics division is already responding to an anticipated growth of "client-side large language model" service development. This market trend will demand improved Universal Flash Storage (UFS) interface speeds—Samsung engineers are currently engaged in: "developing a new product that uses UFS 4.0 technology, but increases the number of channels from the current 2 to 4." The upcoming "more advanced" UFS 4.0 storage chips could be beefy enough to be utilized alongside next-gen mobile processors in 2025. For example; ARM is gearing up "Blackhawk," the Cortex-X4's successor—industry watchdogs reckon that the semiconductor firm's new core is designed to deliver "great Large Language Model (LLM) performance" on future smartphones. Samsung's roadmap outlines another major R&D goal, but this prospect is far off from finalization—their chart reveals an anticipated 2027 rollout. The slide's body of text included a brief teaser: "at the same time, we are also actively participating in discussions on the UFS 5.0 standard."

Samsung Prepares Mach-1 Chip to Rival NVIDIA in AI Inference

During its 55th annual shareholders' meeting, Samsung Electronics announced its entry into the AI processor market with the upcoming launch of its Mach-1 AI accelerator chips in early 2025. The South Korean tech giant revealed its plans to compete with established players like NVIDIA in the rapidly growing AI hardware sector. The Mach-1 generation of chips is an application-specific integrated circuit (ASIC) design equipped with LPDDR memory that is envisioned to excel in edge computing applications. While Samsung does not aim to directly rival NVIDIA's ultra-high-end AI solutions like the H100, B100, or B200, the company's strategy focuses on carving out a niche in the market by offering unique features and performance enhancements at the edge, where low power and efficient computing is what matters the most.

According to SeDaily, the Mach-1 chips boast a groundbreaking feature that significantly reduces memory bandwidth requirements for inference to approximately 0.125x compared to existing designs, which is an 87.5% reduction. This innovation could give Samsung a competitive edge in terms of efficiency and cost-effectiveness. As the demand for AI-powered devices and services continues to soar, Samsung's foray into the AI chip market is expected to intensify competition and drive innovation in the industry. While NVIDIA currently holds a dominant position, Samsung's cutting-edge technology and access to advanced semiconductor manufacturing nodes could make it a formidable contender. The Mach-1 has been field-verified on an FPGA, while the final design is currently going through a physical design for SoC, which includes placement, routing, and other layout optimizations.

Samsung Shows Off 32 Gbps GDDR7 Memory at GTC

Samsung Electronics showed off its latest graphics memory innovations at GTC, with an exhibit of its new 32 Gbps GDDR7 memory chip. The chip is designed to power the next generation of consumer and professional graphics cards, and some models of NVIDIA's GeForce RTX "Blackwell" generation are expected to implement GDDR7. The chip Samsung showed off at GTC is of the highly relevant 16 Gbit density (2 GB). This is important, as NVIDIA is rumored to keep graphics card memory sizes largely similar to where they currently are, while only focusing on increasing memory speeds.

The Samsung GDDR7 chip shown is capable of its 32 Gbps speed at a DRAM voltage of just 1.1 V, which beats the 1.2 V that's part of JEDEC's GDDR7 specification, which along with other power management innovations specific to Samsung, translates to a 20% improvement in energy efficiency. Although this chip is capable of 32 Gbps, NVIDIA isn't expected to give its first GeForce RTX "Blackwell" graphics cards that speed, and the first SKUs are expected to ship with 28 Gbps GDDR7 memory speeds, which means NVIDIA could run this Samsung chip at a slightly lower voltage, or with better timings. Samsung also made some innovations with the package substrate, which decreases thermal resistance by 70% compared to its GDDR6 chips. Both NVIDIA and AMD are expected to launch their first discrete GPUs implementing GDDR7, in the second half of 2024.

Kioxia and WD Elevate Capacity Utilization, Pushing NAND Flash Supply Growth to 10.9%

TrendForce reports that anticipation of NAND Flash price hikes into Q2 has motivated certain suppliers to minimize losses and lower costs in hopes of returning to profitability this year. Kioxia and WD led the charge from March, boosting their capacity utilization rates to nearly 90%—a move not widely adopted by their competitors.

TrendForce points out that to meet the demand surge in the second half of the year, especially given Kioxia and Western Digital's currently low inventory, the production increase is mainly targeting 112-layer and select 2D products. This strategy is expected not only to secure profitability within the year but also to contribute to a projected 10.9% rise in the annual NAND Flash industry supply bit growth rate for 2024.

2024 HBM Supply Bit Growth Estimated to Reach 260%, Making Up 14% of DRAM Industry

TrendForce reports that significant capital investments have occurred in the memory sector due to the high ASP and profitability of HBM. Senior Vice President Avril Wu notes that by the end of 2024, the DRAM industry is expected to allocate approximately 250K/m (14%) of total capacity to producing HBM TSV, with an estimated annual supply bit growth of around 260%. Additionally, HBM's revenue share within the DRAM industry—around 8.4% in 2023—is projected to increase to 20.1% by the end of 2024.

HBM supply tightens with order volumes rising continuously into 2024
Wu explains that in terms of production differences between HBM and DDR5, the die size of HBM is generally 35-45% larger than DDR5 of the same process and capacity (for example, 24Gb compared to 24Gb). The yield rate (including TSV packaging) for HBM is approximately 20-30% lower than that of DDR5, and the production cycle (including TSV) is 1.5 to 2 months longer than DDR5.

Samsung Expected to Unveil Enterprise "PBSSD" Subscription Service at GTC

Samsung Electronics is all set to discuss the future of AI, alongside Jensen Huang, at NVIDIA's upcoming GTC 2024 conference. South Korean insiders have leaked the company's intentions, only days before the event's March 18 kickoff time. Their recently unveiled 36 GB HBM3E 12H DRAM product is expected to be the main focus of official presentations—additionally, a new storage subscription service is marked down for a possible live introduction. An overall "Redefining AI Infrastructure" presentation could include—according to BusinessKorea—a planned launch of: "petabyte (PB)-level SSD solution, dubbed 'PBSSD,' along with a subscription service in the US market within the second quarter (of 2024) to address the era of ultra-high-capacity data."

A Samsung statement—likely sourced from leaked material—summarized this business model: "the subscription service will help reduce initial investment costs in storage infrastructure for our customers and cut down on maintenance expenses." Under agreed upon conditions, customers are not required to purchasing ultra-high-capacity SSD solutions outright: "enterprises using the service can flexibly utilize SSD storage without the need to build separate infrastructure, while simultaneously receiving various services from Samsung Electronics related to storage management, security, and upgrades." A special session—"The Value of Storage as a Service for AI/ML and Data Analysis"—is alleged to be on the company's GTC schedule.

NAND Flash Market Landscape to Change, Reports TrendForce

With the effective reduction of production by suppliers, the price of memory is rebounding, and the semiconductor memory market finally shows signs of recovery. From the perspective of market dynamics and demand changes, NAND Flash, as one of the two major memory products, is experiencing a new round of changes. Since 3Q23, NAND Flash chip prices have been on the rise for several consecutive months. TrendForce believes that, under the precondition of a conservative market demand prospect for 2024, chip price trends will depend on suppliers' production capacity utilization.

There have been frequent developments in the NAND flash memory industry chain, with some manufacturers indicating a willingness to raise prices or increase production capacity utilization. Wallace C. Kou, General Manager of NAND Flash Supplier SIMO, stated that prices for the second quarter of NAND Flash have already been settled down, which will increase by 20%; some suppliers have started to make profits in the first quarter, and most suppliers will earn money after the second quarter.

Samsung Reportedly Acquiring New Equipment Due to Disappointing HBM Yields

Industry insiders reckon that Samsung Electronics is transitioning to molded underfill (MR-MUF) production techniques—rival memory manufacturer, SK Hynix, champions this chip making technology. A Reuters exclusive has cited claims made by five industry moles—they believe that Samsung is reacting to underwhelming HBM production yields. The publication proposes that: "one of the reasons Samsung has fallen behind (competing producers) is its decision to stick with chip making technology called non-conductive film (NCF) that causes some production issues, while Hynix switched to the mass reflow molded underfill (MR-MUF) method to address NCF's weakness." The report suggests that Samsung is in the process of ordering new MUF-related equipment.

One anonymous source stated: "Samsung had to do something to ramp up its HBM (production) yields... adopting MUF technique is a little bit of swallow-your-pride type thing for (them), because it ended up following the technique first used by SK Hynix." Reuters managed to extract a response from the giant South Korean multinational—a company spokesperson stated: "we are carrying out our HBM3E product business as planned." They indicated that NCF technology remains in place as an "optimal solution." Post-publication, another official response was issued: "rumors that Samsung will apply MR-MUF to its HBM production are not true." Insiders propose a long testing phase—Samsung is rumored to be sourcing MUF materials, but mass production is not expected to start this year. Three insiders allege that Samsung is planning to "use both NCF and MUF techniques" for a new-generation HBM chip.

NVIDIA's Selection of Micron HBM3E Supposedly Surprises Competing Memory Makers

SK Hynix believes that it leads the industry with the development and production of High Bandwidth Memory (HBM) solutions, but rival memory manufacturers are working hard on equivalent fifth generation packages. NVIDIA was expected to select SK Hynix as the main supplier of HBM3E parts for utilization on H200 "Hopper" AI GPUs, but a surprise announcement was issued by Micron's press team last month. The American firm revealed that HBM3E volume production had commenced: ""(our) 24 GB 8H HBM3E will be part of NVIDIA H200 Tensor Core GPUs, which will begin shipping in the second calendar quarter of 2024. This milestone positions Micron at the forefront of the industry, empowering artificial intelligence (AI) solutions with HBM3E's industry-leading performance and energy efficiency."

According to a Korea JoongAng Daily report, this boast has reportedly "shocked" the likes of SK Hynix and Samsung Electronics. They believe that Micron's: "announcement was a revolt from an underdog, as the US company barely held 10 percent of the global market last year." The article also points out some behind-the-scenes legal wrangling: "the cutthroat competition became more evident when the Seoul court sided with SK Hynix on Thursday (March 7) by granting a non-compete injunction to prevent its former researcher, who specialized in HBM, from working at Micron. He would be fined 10 million won for each day in violation." SK Hynix is likely pinning its next-gen AI GPU hopes on a 12-layer DRAM stacked HBM3E product—industry insiders posit that evaluation samples were submitted to NVIDIA last month. The outlook for these units is said to be very positive—mass production could start as early as this month.

JEDEC Agrees to Relax HBM4 Package Thickness

JEDEC is currently presiding over standards for 6th generation high bandwidth memory (AKA HBM4)—the 12 and 16-layer DRAM designs are expected to reach mass production status in 2026. According to a ZDNET South Korea report, involved manufacturers are deliberating over HBM4 package thicknesses—allegedly, decision makers have settled on 775 micrometers (μm). This is thicker than the previous generation's measurement of 720 micrometers (μm). Samsung Electronics, SK Hynix and Micron are exploring "hybrid bonding," a new packaging technology—where onboard chips and wafers are linked directly to each other. Hybrid bonding is expected to be quite expensive to implement, so memory makers are carefully considering whether HBM4 warrants its usage.

ZDNET believes that JEDEC's agreement—settling on 775 micrometers (μm) for 12-layer and 16-layer stacked HBM4—could have: "a significant impact on the future packaging investment trends of major memory manufacturers. These companies have been preparing a new packaging technology, hybrid bonding, keeping in mind the possibility that the package thickness of HBM4 will be limited to 720 micrometers. However, if the package thickness is adjusted to 775 micrometers, 16-layer DRAM stacking HBM4 can be sufficiently implemented using existing bonding technology." A revised schedule could delay the rollout of hybrid bonding—perhaps pushed back to coincide with a launch of seventh generation HBM. The report posits that Samsung Electronics, SK Hynix and Micron memory engineers are about to focus on the upgrading of existing bonding technologies.

Samsung Accelerates R&D of Glass Substrate Chip Packaging

The Samsung Group has formed a new cross-department alliance—according to South Korea's Sedaily—this joint operation will concentrate on the research and development of a "dream substrate." The company's Electronics, Electrical Engineering, and Display divisions are collaborating in order to accelerate commercialization of "glass substrate" chip packaging. Last September, Intel revealed its intention to become an industry leader in "glass substrate production for next-generation advanced packaging." Team Blue's shiny new Arizona fabrication site will be taking on this challenge, following ten years of internal R&D work. Industry watchdogs reckon that mass production—in North America—is not expected to kick off anytime soon. Sensible guesstimates suggest a start date somewhere in 2030.

The Sedaily article states that Samsung's triple department alliance will target "commercialization faster than Intel." Company representatives—in attendance at CES 2024—set a 2026 window as their commencement goal for advanced glass substrate chip package mass production. An unnamed South Korean industry watcher has welcomed a new entrant on the field: "as each company possesses the world's best technology, synergies will be maximized in glass substrate research, which is a promising field...it is also important to watch how the glass substrate ecosystem of Samsung's joint venture will be established." Glass substrate packaging is ideal for "large-area and high-performance chip combinations" due to inherent heat-resistant properties and material strength. So far, the semiconductor industry has struggled with its development—hence the continued reliance on plastic boards and organic materials.

HBM3 Initially Exclusively Supplied by SK Hynix, Samsung Rallies Fast After AMD Validation

TrendForce highlights the current landscape of the HBM market, which as of early 2024, is primarily focused on HBM3. NVIDIA's upcoming B100 or H200 models will incorporate advanced HBM3e, signaling the next step in memory technology. The challenge, however, is the supply bottleneck caused by both CoWoS packaging constraints and the inherently long production cycle of HBM—extending the timeline from wafer initiation to the final product beyond two quarters.

The current HBM3 supply for NVIDIA's H100 solution is primarily met by SK hynix, leading to a supply shortfall in meeting burgeoning AI market demands. Samsung's entry into NVIDIA's supply chain with its 1Znm HBM3 products in late 2023, though initially minor, signifies its breakthrough in this segment.

Global Top 10 Foundries Q4 Revenue Up 7.9%, Annual Total Hits US$111.54 Billion in 2023

The latest TrendForce report reveals a notable 7.9% jump in 4Q23 revenue for the world's top ten semiconductor foundries, reaching $30.49 billion. This growth is primarily driven by sustained demand for smartphone components, such as mid and low-end smartphone APs and peripheral PMICs. The launch season for Apple's latest devices also significantly contributed, fueling shipments for the A17 chipset and associated peripheral ICs, including OLED DDIs, CIS, and PMICs. TSMC's premium 3 nm process notably enhanced its revenue contribution, pushing its global market share past the 60% threshold this quarter.

TrendForce remarks that 2023 was a challenging year for foundries, marked by high inventory levels across the supply chain, a weak global economy, and a slow recovery in the Chinese market. These factors led to a downward cycle in the industry, with the top ten foundries experiencing a 13.6% annual drop as revenue reached just $111.54 billion. Nevertheless, 2024 promises a brighter outlook, with AI-driven demand expected to boost annual revenue by 12% to $125.24 billion. TSMC, benefiting from steady advanced process orders, is poised to far exceed the industry average in growth.

Intel 14A Node Delivers 15% Improvement over 18A, A14-E Adds Another 5%

Intel is revamping its foundry play, and the company is set on its goals of becoming a strong contender to rivals such as TSMC and Samsung. Under Pat Gelsinger's lead, Intel recently split (virtually, under the same company) its units into Intel Product and Intel Foundry. During the SPIE 2024 conference for optics and photonics, Anne Kelleher, Intel's senior vice president, revealed that the 14A (1.4 nm) process offers a 15% performance-per-watt improvement over the company's 18A (1.8 nanometers) process. Additionally, the enhanced 14A-E process boasts a further 5% performance boost from the regular A14 node, being a small refresh. Intel's 14A process is set to be the first to utilize High-NA extreme ultraviolet (EUV) equipment, delivering a 20% increase in transistor logic density compared to the 18A node.

The company's aggressive pursuit of next-generation processes poses a significant threat to Samsung Electronics, which currently holds the second position in the foundry market. As part of its IDM 2.0 strategy, Intel hopes to reclaim its position as a leading foundry player and surpass Samsung by 2030. The company's collaboration with American companies, such as Microsoft, further solidifies its ambitions. Intel has already secured a $15 billion chip production contract with Microsoft for its 1.8 nm 18A process. The semiconductor industry is closely monitoring Intel's progress, as the company's advancements in process technology could potentially reshape the competitive landscape. With Samsung planning to mass-produce 2 nm process products next year, the race for dominance in the foundry market is heating up.

Snapdragon X Elite-powered Samsung Galaxy Book 4 Edge to Compete with M3 MacBooks in Pricing

In what is a solid hint that Arm-based SoCs such as the Qualcomm Snapdragon X don't just intend to serve as cheaper alternatives to x86-based U-segment processors from Intel and AMD, but also compete in the high-end on virtue of their performance and battery life advantages; Samsung is designing a line of premium thin-and-light notebooks around the upcoming Qualcomm Snapdragon X Elite processor. Snapdragon X crams in the company's most advanced Arm CPU IP, and the latest generation Qualcomm Adreno iGPU; with Qualcomm claiming to offer 2x the CPU and graphics performance over x86 processors in its price-class, at 1/3rd the power (in other words, over 2x the battery life). It also packs a powerful NPU with 45 TOPS AI inferencing performance on tap. The Snapdragon X Elite is essentially Qualcomm's answer to the M3.

With the Snapdragon X Elite, Samsung has designed the new Galaxy Book 4 Edge, and WinFuture has some specs. Apparently the notebook comes in a 14-inch thin-and-light form-factor. The Snapdragon X Elite will be paired with 16 GB of LPDDR5/X memory, and 512 GB of NVMe-based SSD storage. Comms will include a 5G MODEM for connectivity anywhere; and possibly Wi-Fi 7 BE. Although we can't tell from the company images, it stands to reason that Samsung is using an AMOLED touchscreen display. WinFuture reports that Samsung plans to price the Galaxy Book 4 Edge at €1,759, which should put it in competition with several models of M3-powered MacBooks. The best part? The notebook is powered by Windows 11, and comes with a Microsoft-supplied translation layer for running legacy PC apps on it.

Samsung Anticipates 2027-2028 Entry into Micro OLED AR/VR Market

Choi Joo-sun, CEO of Samsung Display, spoke to journalists post-conclusion of a March 6 lecture at the Korea Advanced Institute of Science and Technology (KAIST). A Chosun Daily Business reporter pulled some quotes regarding Samsung's outlook for new generation micro OLED technologies. Choi and his colleagues are likely taking their time on this development front—Sony Semiconductor Solutions (SSS) has already mass-produced OLED Microdisplay products. The Japanese technology giant is the main supplier of display panels for Apple's Vision Pro mixed reality headset—a recent iFixit teardown revealed a possible custom-designed unit. Leaked "Bill of Materials" figures indicate an eye-watering total cost of $456 for a pair of SSS 4K panels—Apple is reportedly engaged in negotiations with SeeYa and BOE regarding the supply of cheaper alternatives.

The Samsung Display boss is monitoring current industry trends, but his team is not rushing out competing solutions: "The market potential of micro OLED, which is used in augmented reality (AR) and virtual reality (VR), is significant, but I believe the market will begin in earnest around 2027-2028...there are many technical aspects to overcome and cost considerations." Choi believes that Samsung is better off with plenty of preparation time, before an anticipated bloom in the micro OLED market—in his opinion, domination can be achieved with careful investment in research and development (R&D) efforts. He stated: "During the remaining 2 to 3 years, we will deploy manpower to ensure that Samsung Display does not fall behind in the micro OLED market and introduce solutions that are competitive compared to competitors...The acquisition of Imagine, an American display company, is also part of this effort."

Enterprise SSD Industry Hits US$23.1 Billion in Revenue in 4Q23, Growth Trend to Continue into Q1 This Year

The third quarter of 2023 witnessed suppliers dramatically cutting production, which underpinned enterprise SSD prices. The fourth quarter saw a resurgence in contract prices, driven by robust buying activity and heightened demand from server brands and buoyed by optimistic capital expenditure forecasts for 2024. This, combined with increased demand from various end products entering their peak sales period and ongoing reductions in OEM NAND Flash inventories, resulted in some capacity shortages. Consequently, fourth-quarter enterprise SSD prices surged by over 15%. TrendForce highlights that this surge in demand and prices led to a 47.6% QoQ increase in enterprise SSD industry revenues in 4Q23, reaching approximately $23.1 billion.

The stage is set for continued fervor as we settle into the new year and momentum from server brand orders continues to heat up—particularly from Chinese clients. On the supply side, falling inventory levels and efforts to exit loss-making positions have prompted enterprise SSD prices to climb, with contract prices expected to increase by over 25%. This is anticipated to fuel a 20% revenue growth in Q1.

Samsung Elevates Your Gaming Experience with the Award-Winning Odyssey Neo G9

Samsung Electronics continues to redefine the boundaries of immersive gaming with the Odyssey Neo G9 (G95NC), which has garnered widespread acclaim and numerous awards for its unparalleled performance and innovation. The Odyssey Neo G9 set a new standard with its 57-inch Dual UHD display, combining unmatched visual clarity with cutting-edge technology to deliver an immersive gaming experience as well as boosts in productivity. This state-of-the-art monitor is the equivalent of having two 32-inch monitors in one unit, with a 1000R curved screen for maximum immersion.

With Quantum Matrix Technology, coupled with a lightning-fast 240 Hz refresh rate and 1 ms response time, the Odyssey Neo G9 also offers vibrant visuals, precise control and seamless action in every frame. The Odyssey Neo G9 has received high marks from media, such as Newsweek and Techaeris, with the latter recognizing it as the "world's first dual UHD monitor that delivers in spades." In fact, the Odyssey Neo G9 earned a spot in Techaeris' 'Best of 2023' category, underscoring the Odyssey Neo G9's impressive performance and features that make the monitor a standout choice for gamers.
Return to Keyword Browsing
Feb 17th, 2025 20:32 EST change timezone

New Forum Posts

Popular Reviews

Controversial News Posts