News Posts matching #Taiwan

Return to Keyword Browsing

DRAM Revenue Undergoes 26% Increase QoQ for 2Q21 Owing to Rising Quotes and Higher-Than-Expected Shipment, Says TrendForce

After DRAM prices made a rebound into an upward trajectory in 1Q21, buyers expanded their DRAM procurement activities in 2Q21 as they anticipated a further price hike and insufficient supply going forward, according to TrendForce's latest investigations. Not only was demand robust from clients in the notebook segment, which benefitted from ongoing WFH and distance learning applications, but CSPs also sought to gradually replenish their DRAM inventories. Furthermore, demand for products that are relatively niche, including graphics DRAM and consumer DRAM, remained strong. Hence, DRAM suppliers experienced better-than-expected QoQ increases in their DRAM shipment for 2Q21. At the same time, DRAM quotes grew by a greater magnitude compared to the first quarter as well. With both shipment and quotes undergoing growths in tandem, DRAM suppliers registered remarkable growths in their revenues in 2Q21. Total DRAM revenue for 2Q21 reached US$24.1 billion, a 26% QoQ increase.

NVIDIA Founder and CEO Jensen Huang to Receive Prestigious Robert N. Noyce Award

The Semiconductor Industry Association (SIA) today announced Jensen Huang, founder and CEO of NVIDIA and a trailblazer in building accelerated computing platforms, is the 2021 recipient of the industry's highest honor, the Robert N. Noyce Award. SIA presents the Noyce Award annually in recognition of a leader who has made outstanding contributions to the semiconductor industry in technology or public policy. Huang will accept the award at the SIA Awards Dinner on Nov. 18, 2021.

"Jensen Huang's extraordinary vision and tireless execution have greatly strengthened our industry, revolutionized computing, and advanced artificial intelligence," said John Neuffer, SIA president and CEO. "Jensen's accomplishments have fueled countless innovations—from gaming to scientific computing to self-driving cars—and he continues to advance technologies that will transform our industry and the world. We're pleased to recognize Jensen with the 2021 Robert N. Noyce Award for his many achievements in advancing semiconductor technology."

TEAMGROUP Launches T-FORCE CARDEA A440 Pro Special Series M.2 SSD Unlock the PS5 Expansion Slot and Unleash Your Gaming Spirit

At the end of July, Sony Interactive Entertainment (SIE) announced the specifications and guidelines for expanding the console's built-in internal storage and confirmed that the PlayStation 5 (PS5) will now support M.2 SSDs for users to expand storage for game files and applications on the PS5. Today, TEAMGROUP's gaming brand, T-FORCE, is unveiling the T-FORCE CARDEA A440 Pro Special Series M.2 PCIe SSD with the industry's first-ever white graphene heat sink. The latest M.2 SSD, made specifically for expanding storage and will be available for gamers around the world on major e-commerce platforms in October, 2021.

The T-FORCE CARDEA A440 Pro Special Series M.2 SSD is being announced today by TEAMGROUP and is equipped with the industry's first-ever white graphene heat sink. The M.2 PCIe 4.0 SSD, created specifically to expand PS5 storage, can reach read/write speeds of up to 7,400/7,000 MB/s and offers storage capacities of up to 8 TB. The T-FORCE CARDEA A440 Pro Special Series M.2 SSD meets the specifications for the PS5 in heat sink size, read/write speeds, and supported capacities, allowing PS5 gamers to install it easily and get the storage they need instantly.

GIGABYTE Hacked, Attackers Threaten to Leak Confidential Intel, AMD, AMI Documents

PC components major GIGABYTE has reportedly been hacked, with the attacker group, which goes by the name RansomEXX, stealing 112 GB in data that contains confidential technical documents from Intel, AMD, and others; which are released to GIGABYTE under strict NDAs, to help it design motherboards, notebooks, desktops, servers, and graphics cards. The group also deployed ransomware to encrypt GIGABYTE's data, which includes these documents. The attack allegedly occurred in the week of August 2, and GIGABYTE was forced to shut down its systems in its Taiwan headquarters. This even caused some downtime for its websites.

While it's conceivable that a company of GIGABYTE's scale would maintain timely cold backups of its data, and can recover almost everything RansomEXX encrypted, there's another aspect to this attack, and it's the data the attackers stole. They threaten to leak the data if a ransom isn't paid in time. This would put a large amount of confidential documents, including motherboard designs, UEFI/BIOS/TPM data/keys, etc., out in the public domain. GIGABYTE didn't comment on the issue beyond stating that it has isolated the affected servers from the rest of its network and notified law enforcement.

Intel Books Two 3 nm Processor Orders at TSMC Manufacturing Facilities

Intel's struggles with semiconductor manufacturing have been known for a very long time. Starting from its 10 nm design IP to the latest 7 nm delays, we have seen the company struggle to deliver its semiconductor nodes on time. On the other hand, Intel's competing companies are using 3rd party foundries to manufacture their designs and not worry about the yields of semiconductor nodes. Most of the time, that 3rd party company is Taiwan Semiconductor Manufacturing Company (TSMC). Today, thanks to some reporting from Nikkei Asia, we are learning that Intel is tapping TSMC's capacities to manufacture some of the company's future processors.

Citing sources familiar with the matter, Nikkei notes that: "Intel, America's biggest chipmaker, is working with TSMC on at least two 3-nm projects to design central processing units for notebooks and data center servers in an attempt to regain market share it has lost to Advanced Micro Devices and Nvidia over the past few years. Mass production of these chips is expected to begin by the end of 2022 at the earliest." This means that we could expect to see some of the TSMC manufactured Intel processors by the year 2023/2024.

Second TSMC Fab Worker Detected with COVID-19, Chip Shortages on the Anvil?

Taiwan's most valuable company, and chipmaker of the world, TSMC, confirmed that at least two of its fab workers have been diagnosed with COVID-19, but maintains that it doesn't affect operations at the plants. Most regions around world, including Taiwan, are bracing for successive waves of the disease, and a spread of COVID at TSMC could spell big trouble for the tech-giants dependent on the company for contract-manufacturing of their cutting-edge logic chips. Taiwan has been mostly spared from the Corona epidemic, but is now experiencing its largest wave of COVID-19 infections, with its medical infrastructure under strain. The latest outbreak has the potential to throw operations at TSMC off gear, affecting the supply chains of tens of billions of Dollars worth devices and vehicles around the world.

TSMC maintains an internal epidemic prevention committee, which has conducted contact-tracing of the the two employees, and discovered 10 contacts. Some of these have been sent to home-isolation, while others are closely monitoring themselves for symptoms. TSMC pledged that it will monitor the health of its employees on a daily basis. It has also completed the disinfection of the affected employees' workplace, and public areas visited by them. It once again emphasized that the incident will not affect company operations.

TSMC Claims Breakthrough on 1nm Chip Production

TSMC in collaboration with the National Taiwan University (NTU) and the Massachusetts Institute of Technology (MIT) have made a significant breakthrough in the development of 1-nanometer chips. The joint announcement comes after IBM earlier this month published news of their 2-nanometer chip development. The researchers found that the use of semi-metal bismuth (Bi) as contact electrodes for the 2D matrix can greatly reduce resistance and increase current. This discovery was first made by the MIT team before then being further refined by TSMC and NTU which will increase energy efficiency and performance in future processors. The 1-nanometer node won't be deployed for several years with TSMC planning to start 3-nanometer production in H2 2022.

NVIDIA to Deliver a Keynote on The Transformational Power of Accelerated Computing at COMPUTEX 2021 Hybrid

TAITRA (Taiwan External Trade and Development Council) announced today that NVIDIA will be delivering a keynote, entitled "The Transformational Power of Accelerated Computing, from Gaming to the Enterprise Data Center" at COMPUTEX 2021 Hybrid. Jeff Fisher, Senior Vice President of NVIDIA's GeForce Business Unit, will present on June 1 at 1:00 pm Taiwan time on the massive opportunities that GeForce PC gaming represents for the Taiwan ecosystem.

Manuvir Das, Head of Enterprise Computing at NVIDIA, will then address "The Coming Democratization of AI." He will share three shifts driving this trend and explain how enterprises that embrace them can thrive in the coming years.

GIGABYTE Gives Public Apology for "Made in China" Mocking After Company Shares Plummet by $550 Million

On Monday, GIGABYTE, a Taiwanese PC manufacturer, has published a blog post that made fun of other component manufacturers for having their products made in China, the "low-cost, low-quality way". According to Bloomberg, who was the first to spot the blog post, which is now removed. According to the report, such a statement had a massive toll on the shares of the Taiwanese company. E-commerce operators in China, like JD.com Inc. and Suning.com Co., have removed GIGABYTE products from their offerings and searching GIGABYTE or "Jijia" (Chinese company name) returned zero results from these websites. This has single-handedly caused the shares of the company to plummet by 10%, wiping away around $550 million worth of market cap.

The original blog post has since been removed, and GIGABYTE has issued a public apology, which you can see here. The translation of the text says that "A few days ago, part of the text content published on our official website is seriously inconsistent with the fact. It is caused by poor internal management of the company. We sincerely apologize for the discomfort caused to you." The company has also noted that it is very proud of "Made in China" products. On a more personal note, it is interesting to see such a strict market response coming from a blog post, and even more interesting to witness this exclusion from the Chinese e-commerce companies.

DRAM Revenue for 1Q21 Undergoes 8.7% Increase QoQ Thanks to Increased Shipment as Well as Higher Prices, Says TrendForce

Demand for DRAM exceeded expectations in 1Q21 as the proliferation of WFH and distance education resulted in high demand for notebook computers against market headwinds, according to TrendForce's latest investigations. Also contributing to the increased DRAM demand was Chinese smartphone brands' ramp-up of component procurement while these companies, including OPPO, Vivo, and Xiaomi, attempted to seize additional market shares after Huawei's inclusion on the Entity List. Finally, DRAM demand from server manufacturers also saw a gradual recovery. Taken together, these factors led to higher-than-expected shipments from various DRAM suppliers in 1Q21 despite the frequent shortage of such key components as IC and passive components. On the other hand, DRAM prices also entered an upward trajectory in 1Q21 in accordance with TrendForce's previous forecasts. In light of the increases in both shipments and quotes, all DRAM suppliers posted revenue growths in 1Q21, and overall DRAM revenue for the quarter reached US$19.2 billion, an 8.7% growth QoQ.

Demand for PC, mobile, graphics, and special DRAM remains healthy in 2Q21. Furthermore, after two to three quarters of inventory reduction during which their DRAM demand was relatively sluggish, some server manufacturers have now kicked off a new round of procurement as they expect a persistent increase in DRAM prices. TrendForce therefore forecasts a significant QoQ increase in DRAM ASP in 2Q21. In conjunction with increased bit shipment, this price hike will likely drive total DRAM revenue for 2Q21 to increase by more than 20% QoQ.

AMD CEO Dr. Lisa Su to Keynote at Computex 2021—Third Year in a Row

TAITRA (Taiwan External Trade and Development Council) announced today that Dr. Lisa Su, President and CEO of AMD, is invited back to deliver a keynote address at COMPUTEX 2021. This digital keynote will be on Tuesday, June 1, at 10:00 AM Taipei time, with the keynote theme "AMD Accelerating - The High-Performance Computing Ecosystem." COMPUTEX displays will be digital this year, with keynotes and forums running on hybrid. "It has been a year unlike others. Technology has gotten us through some of the most challenging times," said James Huang, TAITRA Chairman. "We will continue to transform our exhibition models and practices to meet the evolving needs of our exhibitors, visitors, and media, without losing the most essential element of a trade show - connection."

Dr. Lisa Su is proud to join COMPUTEX once again in 2021. "The past year has shown us the important role high-performance computing plays in our daily lives - from the way we work to the way we learn and play. At this year's COMPUTEX, AMD will share how we accelerate innovation with our ecosystem partners to deliver a leadership product portfolio," said Dr. Lisa Su. At the COMPUTEX | AMD CEO Keynote, Dr. Lisa Su will share the AMD vision for the future of computing, including details of the growing adoption of the AMD high-performance computing and graphics solutions, built for PC enthusiasts and gamers.

TSMC Employs AMD EPYC CPUs for Mission-Critical Manufacturing

Taiwan Semiconductor Manufacturing Company, the maker of various kinds of silicon products, is the manufacturer of AMD's EPYC processors. However, have you ever questioned what CPUs are actually behind TSMC? The answer to that question is quite simple. Today, we have come to know that TSMC is using AMD EPYC processors to power their manufacturing infrastructure and tape out thousands of wafers per month. AMD has published TSMC's case study, which pointed out that the total cost of ownership has been the main challenge of the Taiwanese company. By using AMD EPYC 7702P and 7F72 CPUs, TSMC addresses the need for both reliable and high-performing server infrastructure to power the manufacturing efforts. For research and development purposes, TSMC chose the 7F72 with 24 cores and a high clock speed of 3.2 GHz, which is ideal for the company needs and purposes.

For more details about TSMC's choices and solutions, read the case study here.

UMC Investing $3.6 billion on 28 nm Manufacturing Capabilities Amidst Worldwide Semiconductor Shortages

UMC has announced plans to invest $3.6 billion in increasing output from its 28 nm manufacturing facilities. This move comes amidst a global semiconductor shortage, and isn't the first time a semiconductor manufacturer "dust off" their older manufacturing processes as a way to remove pressure from more modern silicon manufacturing capabilities. In this case, UMC will be increasing manufacturing output from its 300 mm Fab 12A facility in Tainan, Taiwan.

UMC has entered agreements with some of its clients, who will be paying upfront for expected chip rollout in the future. In exchange, clients will get the benefits of preset pricing (thus avoiding any potential increases arising from increased demand or general price fluctuation), as well as UMC's assurance of certain manufacturing volume allocation towards their needs. Fab 12A currently manufactures 90,000 300 mm wafers per month (wpm). An additional 10,000 wpm is being installed this year and phase six will add another 27,500 wpm to the mix. The mature 28 nm tools will be installed in floors that already feature support for future tooling upgrades to 14 nm. UMC expects to hire around 1,000 additional employees as part of this expansion effort.

2020 Global Semiconductor Equipment Sales Surge 19% to Industry Record $71.2 Billion, SEMI Reports

Worldwide sales of semiconductor manufacturing equipment surged 19% from $59.8 billion in 2019 to a new all-time high of $71.2 billion in 2020, SEMI, the industry association representing the global electronics product design and manufacturing supply chain, reported today. The data is now available in the Worldwide Semiconductor Equipment Market Statistics (WWSEMS) Report.

For the first time, China claimed the largest market for new semiconductor equipment with sales growth of 39% to $18.72 billion. Sales in Taiwan, the second-largest equipment market, remained flat in 2020 with sales of $17.15 billion after showing strong growth in 2019. Korea registered 61% growth to $16.08 billion to maintain the third position. Annual spending also increased 21% in Japan and 16% in Europe as both regions are recovering from the contraction in 2019. Receipts in North America decreased 20% in 2020 following three years of consecutive growth.

Global Chip Shortage Takes Another Toll... Now Your Home Router?

The global supply of semiconductor processors has been at risk lately. Starting from GPUs to CPUs, the demand for both has been much greater than the available supply. Manufacturing companies, such as TSMC, have been expanding capacities, however, they have not yet been able to satisfy the demand. We have seen the results of that demand in a form of the scarcity of the latest generation of graphics cards, covering NVIDIA's GeForce RTX 3000 series Ampere, and AMD' Radeon RX 6000 series Big Navi graphics cards. Consumers have had a difficult time sourcing them and they have seen artificial price increase that is much higher than their original MSRP.

However, it doesn't seem like the situation will improve. According to the latest reporting from Bloomberg, the next victim of global chip shortage is... you guessed it, your home internet router. The cited sources have noted that the waiting list to get a batch of ordered routers has doubled the waiting time, from the regular 30 weeks to 60-week waiting time. This represents a waiting list that is more than a year long. With the global COVID-19 pandemic still going strong, there is an increased need for better home router equipment, and delays can only hurt broadband providers that supply routers. Taiwan-based router manufacturer Zyxel Communications, notes that the company has seen massive demand for their equipment. Such a massive demand could lead to insufficient supply, which could increase prices of routers well above their MSRP and bring scarcity of them as well.

Intel Could Rename its Semiconductor Nodes to Catch Up with the Industry

In the past few years, Intel has struggled a lot with its semiconductor manufacturing. Starting from the 10 nm fiasco, the company delayed the new node for years and years, making it seem like it is never going to get delivered. The node was believed to be so advanced that it was unexpectedly hard to manufacture, giving the company more problems. Low yields have been present for a long time, and it is only recently that Intel has started shipping its 10 nm products. However, its competitor, TSMC, has been pumping out nodes at an amazing rate. At the time of writing, the Taiwanese giant is producing the 5 nm node, with a 4 nm node on the way.

So to remain competitive, Intel would need to apply a new tactic. The company has a 7 nm node in the works for 2023 when TSMC will switch to the 3 nm+ nodes. That represents a marketing problem, where the node naming convention is making Intel inferior to its competitors. To fix that, the company will likely start node renaming and give its nodes new names, that are corresponding to the industry naming conventions. We still have no information how will the new names look like, or if Intel will do it in the first place, so take this with a grain of salt.

Revenue of Top 10 IC Design (Fabless) Companies for 2020 Undergoes 26.4% Increase YoY, Says TrendForce

The emergence of the COVID-19 pandemic in 1H20 seemed at first poised to devastate the IC design industry. However, as WFH and distance education became the norm, TrendForce finds that the demand for notebook computers and networking products also spiked in response, in turn driving manufacturers to massively ramp up their procurement activities for components. Fabless IC design companies that supply such components therefore benefitted greatly from manufacturers' procurement demand, and the IC design industry underwent tremendous growth in 2020. In particular, the top three IC design companies (Qualcomm, Broadcom, and Nvidia) all posted YoY increases in their revenues, with Nvidia registering the most impressive growth, at a staggering 52.2% increase YoY, the highest among the top 10 companies.

Container Ship Meets with an Accident, Clogging the Suez Canal

A super-heavy merchant ship has met with an accident, causing it to turn sideways, and effectively clogging the Suez Canal. The 400 m (1,312 ft) long ship turned sideways, causing it to run aground, into the canal's embankments. Why is this important? Notwithstanding the fact that the incident has caused the biggest backlog of ships at the Suez Canal, a vital trade-route linking Asia and Europe; the Panama-registered ship is operated by Taiwan's largest shipping company, Evergreen. The company, which also owns EVA Air, Taiwan's second largest airline, is believed to handle a bulk of the nation's electronics exports. This particular vessel, bearing the call-sign "Ever Given," was bound for the Dutch port of Rotterdam from China. A mariner aboard its trailing vessel, the Maersk Denver, captured this image of the beached ship. The disruption has caused several days worth shipping backlog, and could affect both ends of the supply-chain.

TSMC Could Build Six GigaFabs in Arizona

Taiwan Semiconductor Manufacturing Company (TSMC), one of the largest manufacturers of silicon, is seemingly making plans to build as many as six of its US-based fabs in Arizona. According to the unconfirmed report coming from UDN, TSMC could be building its Arizona-based factories for much larger capacities. Based on TSMC's classifications, the MegaFab-class of factories is the one with 25,000 WSPM output. According to the report, TSMC plans to build six additional facilities in the area where the Arizona fab is, and have a GigaFab-class (even larger type) factory present on US soil. Currently, the company operates six GigaFabs and all of them are based in Taiwan.

The GigaFab class factory is supposed to have over 100,000 WSPM output, and by building one in the US, TSMC could get much closer to big customers like Apple, NVIDIA, and AMD. Reports are saying that TSMC's primary target is 3 nm node production on 12-inch (300 mm) wafers. All six of the supposed facilities are expected to output more than 100,000 wafers at their peak, making it one of the largest projects TSMC has ever done. The Arizona location is supposed to serve as a "mega fab" facility and it is supposed to start manufacturing silicon in 2024. This information is, of course, just a rumor so you should take it with a grain of salt, as this type of information is usually only known by top-level management.

DRAM Revenue for 4Q20 Undergoes Modest 1.1% Increase QoQ in Light of Continued Rising Shipment and Falling Prices, Says TrendForce

Global DRAM revenue reached US$17.65 billion, a 1.1% increase YoY, in 4Q20, according to TrendForce's latest investigations. For the most part, this growth took place because Chinese smartphone brands, including Oppo, Vivo, and Xiaomi, expanded their procurement activities for components in order to seize the market shares made available after Huawei was added to the Entity List by the U.S. Department of Commerce. These procurement activities in turn provided upward momentum for DRAM suppliers' bit shipment. However, clients in the server segment were still in the middle of inventory adjustments during this period, thereby placing downward pressure on DRAM prices. As a result, revenues of most DRAM suppliers, except for Micron, remained somewhat unchanged in 4Q20 compared to 3Q20. Micron underwent a noticeable QoQ decline in 4Q20 (which Micron counts as its fiscal 1Q21), since Micron had fewer work weeks during this period compared to the previous quarter.

Explosive Growth in Automotive DRAM Demand Projected to Surpass 30% CAGR in Next Three Years, Says TrendForce

Driven by such factors as the continued development of autonomous driving technologies and the build-out of 5G infrastructure, the demand for automotive memories will undergo a rapid growth going forward, according to TrendForce's latest investigations. Take Tesla, which is the automotive industry leader in the application of autonomous vehicle technologies, as an example. Tesla has adopted GDDR5 DRAM products from the Model S and X onward because it has also adopted Nvidia's solutions for CPU and GPU. The GDDR5 series had the highest bandwidth at the time to complement these processors. The DRAM content has therefore reached at least 8 GB for vehicles across all model series under Tesla. The Model 3 is further equipped with 14 GB of DRAM, and the next-generation of Tesla vehicles will have 20 GB. If content per box is used as a reference for comparison, then Tesla far surpasses manufacturers of PCs and smartphones in DRAM consumption. TrendForce forecasts that the average DRAM content of cars will continue to grow in the next three years, with a CAGR of more than 30% for the period.

Apple is Reportedly Working with TSMC on a Special Micro OLED Panel Technology

OLED panes are expertise areas of display makers such as LG and Samsung, however, when it comes to Apple, they have to rely on external manufacturers to make a display. For years Apple has been contracting LG and Samsung to make the display for iPhones and Macs, but it looks like Apple is now collaborating with another firm to develop micro OLED technology. According to sources over at Nikkei Asia, Apple is collaborating with Taiwan Semiconductor Manufacturing Company (TSMC) to develop "ultra-advanced display technology at a secretive facility in Taiwan". Despite TSMC not being the traditional choice for panel manufacturing, there is a list of reasons why Apple chose its years-long partner to work with.

TSMC is known for manufacturing silicon chips, however, Apple envisions that the Taiwan maker will manufacture ultra-advanced micro OLED technology using wafers. Building the displays using wafers will result in much lower power consumption and far lower size. Why is this approach necessary you might wonder? Well, Apple is developing a new generation of AR glasses and there needs to be a solid display technology for them to exist. It is reported that the new micro OLED displays are under development and are about one inch in diameter. The source also adds that this is just one out of two projects being worked on inside of Apple's secretive labs located in the Taiwanese city of Taoyuan. What is the other project remains a mystery, however, with more time we could get information on that as well.

TSMC to Put Away More Capacity for Automotive Industry if Possible

TSMC is one of the world's biggest semiconductor manufacturers, and the company is currently the leading provider of the newest technologies like 5 nm and 3 nm, along with advanced packaging. So far, TSMC's biggest customers have included Apple, NVIDIA, AMD, etc., where the company has mainly produced chips for mobile phones and PCs/Servers. However, Taiwan's Economics Ministry has announced that they have spoken to TSMC and have reached an agreement that the company will be putting away some additional capacity for the automotive industry, specifically for the production of automotive chips. The reason for this push is the increasing shortage of semiconductors for automakers, experienced due to the Trump administration sanctions against key Chinese chip factories.

TSMC has stated that "Other than continuously maximizing utilization of our existing capacity, Dr. Wei also confirmed in our investors' conference that we are working with customers closely and moving some of their mature nodes to more advanced nodes, where we have a better capacity to support them". The company also states that their capacities are fully utilized for now, however, TSMC has ensured ministry that "if production can be increased by optimizing production capacity, it will cooperate with the government to regard automotive chips as a primary application." That means that TSMC will not decrease any existing capacity, but rather just evaluate any increased capacity for automotive chip production.

Industry R&D Spending To Rise 4% After Hitting Record in 2020: IC Insights

Research and development spending by semiconductor companies worldwide is forecast to grow 4% in 2021 to $71.4 billion after rising 5% in 2020 to a record high of $68.4 billion, according to IC Insights' new 2021 edition of The McClean Report—A Complete Analysis and Forecast of the Integrated Circuit Industry. Total R&D spending by semiconductor companies is expected to rise by a compound annual growth rate (CAGR) of 5.8% between 2021 and 2025 to $89.3 billion.

When the world was hit by the Covid-19 virus health crisis in 2020, wary semiconductor suppliers kept a lid on R&D spending increases, even though total semiconductor industry revenue grew by a surprising 8% in the year despite the economic fallout from the deadly pandemic. Semiconductor R&D expenditures as a percentage of worldwide industry sales slipped to 14.2% in 2020 compared to 14.6% in 2019, when research and development spending declined 1% and total semiconductor revenue fell 12%. Figure 1 plots semiconductor R&D spending levels and the spending-to-sales ratios over the past two decades and IC Insights' forecast through 2025.

TSMC Ends Its Volume Discounts For the Biggest Customers, Could Drive Product Prices Up

Taiwan Semiconductor Manufacturing Company (TSMC), one of the largest semiconductor manufacturers in the world, is reportedly ending its volume discounts. The company is the maker of the currently smallest manufacturing nodes, like 7 nm and 5 nm. For its biggest customers, TSMC used to offer a discount - when you purchase 10s or 100s of thousands of 300 mm (12-inch) wafers per month, the company will give you a deal of a 3% price decrease per wafer, meaning that the customer is taking a higher margin off a product it sells. Many of the customers, like Apple, NVIDIA, and AMD, were a part of this deal.

Today, thanks to a report from the Taiwanese Central News Agency, TSMC is terminating this type of discount. Now, every customer will pay full price for the wafer, without any exceptions. For now, it is unclear what drove that decision at TSMC's headquarters, but the only thing that we could think is that the demand is too high to keep up with the discounts and the margins are possibly lower. What this means for consumers is a possible price increase in products that are manufactured at TSMC's facilities. The consumer market is already at a drought of new PC components like CPUs and GPUs due to high demand and scalping. This could contribute a bit to the issue, however, we do not expect it to be of any major significance.
Return to Keyword Browsing
Nov 21st, 2024 06:59 EST change timezone

New Forum Posts

Popular Reviews

Controversial News Posts