News Posts matching #x86-64

Return to Keyword Browsing

Intel Updates 64-Bit Only "X86S" Instruction Set Architecture Specification to Version 1.2

Intel has released version 1.2 of its X86S architecture specification. The X86S project, first announced last year, aims to modernize the x86 architecture that has been the heart of PCs since the late 1970s. Over the decades, Intel and AMD have continually expanded x86's capabilities, resulting in a complex instruction set that Intel now sees as partially outdated. The latest specification primarily focuses on removing legacy features, particularly 16-bit and 32-bit support. This radical departure from x86's long-standing commitment to backward compatibility aligns with the simplification of x86. While the specification does mention a "32-bit compatibility mode," we are yet to how would 32-bit apps run. This ambiguity raises questions about how X86S might handle existing 32-bit applications, which, despite declining relevance, still play a role in many computing environments.

The potential transition to X86S comes at a time when the industry is already moving away from 32-bit support. However, the proposed changes are subject to controversy. The x86 architecture's strength has long been its extensive legacy support, allowing older software to run on modern hardware. A move to X86S could disrupt this ecosystem, particularly for users relying on older applications. Furthermore, introducing X86S raises questions about the future relationship between Intel and AMD, the two primary x86 CPU designers. While Intel leads the initiative, AMD's role in the potential transition remains uncertain, given its significant contributions to the current x86-64 standard.

Qualcomm Snapdragon X Elite Mini-PC Dev Kit Arrives at $899

Qualcomm has started accepting preorders for its Snapdragon Dev Kit for Windows, based on the Snapdragon X Elite processor. Initially announced in May, the device is now available for preorder through Arrow at a competitive price point of $899. Despite its relatively high cost compared to typical mini PCs, it undercuts most recent laptops equipped with Snapdragon X processors, making it an attractive option for both developers and power users alike. Measuring a mere 199 x 175 x 35 mm, it comes equipped with 32 GB of LPDDR5x RAM, a 512 GB NVMe SSD, and support for the latest Wi-Fi 7 and Bluetooth 5 technologies. The connectivity options are equally robust, featuring three USB4 Type-C ports, two USB 3.2 Type-A ports, an HDMI output, and an Ethernet port.

This mini PC's heart lies the Snapdragon X Elite (X1E-00-1DE) processor. This chip houses 12 Oryon CPU cores capable of reaching speeds up to 3.8 GHz, with a dual-core boost potential of 4.3 GHz. The processor also integrates Adreno graphics, delivering up to 4.6 TFLOPS of performance, and a Hexagon NPU capable of up to 45 TOPS for AI tasks. While similar to its laptop counterpart, the X1E-84-100, this version is optimized for desktop use. It can consume up to 80 watts of power, enabling superior sustained performance without the constraints of battery life or heat dissipation typically associated with mobile devices. This dev kit is made primarily to optimize x86-64 software to run on the Arm platform; hence, removing the power limit is beneficial for translating the code to Windows on Arm. The Snapdragon Dev Kit for Windows ships with a 180 W power adapter and comes pre-installed with Windows 11, making it ready for immediate use upon arrival.

Windows Auto Super Resolution Limited to Copilot+ PCs with Snapdragon X Elite SoCs Only—Not x86

Microsoft Auto Super Resolution (ASR), the standardized game super-resolution based performance enhancement, is initially only being offered to Copilot+ AI PCs powered by Qualcomm Snapdragon X Elite processors, says the Microsoft FAQ for Copilot+ AI PCs. "At initial launch, this feature will be exclusive to Copilot+ PCs equipped with a Qualcomm Snapdragon X Elite processor and a curated set of games that can be found here, a third-party open-source site that Microsoft has contributed compatibility data to," the FAQ answer reads, in response to the question "What is automatic super resolution?"

The way we understand this, Microsoft ASR will be launched initially only Windows Arm devices, specifically those powered by the Snapdragon X Elite SoC. The Snapdragon X Plus is excluded; but more importantly, all x86-64 platforms (Intel or AMD) are excluded from the initial rollout. This doesn't mean that ASR won't make it to x86, it just will at a later date. Copilot+ devices based on the Snapdragon X Elite tend to have a high degree of design collaboration between the OEM and Microsoft, and Redmond wants to use them as tech demonstrators, mostly since these platforms lack the usual super resolution tech such as AMD FSR, Intel XeSS, or NVIDIA DLSS. It's important to note that ASR is a super-resolution tech that's not meant to be confused with DirectSR, the API it's based on. Development of DirectSR for Windows PCs on x86-64 platforms continues.

Qualcomm Snapdragon X Elite Benchmarked Against Intel Core Ultra 7 155H

Qualcomm Snapdragon X Elite is about to make landfall in the ultraportable notebook segment, powering a new wave of Windows 11 devices powered by Arm, capable of running even legacy Windows applications. The Snapdragon X Elite SoC in particular has been designed to rival the Apple M3 chip powering the 2024 MacBook Air, and some of the "entry-level" variants of the 2023 MacBook Pros. These chips threaten the 15 W U-segment and even 28 W P-segment of x86-64 processors from Intel, such as the Core Ultra "Meteor Lake," and Ryzen 8040 "Hawk Point." Erdi Özüağ, prominent tech journalist from Türkiye, has access to a Qualcomm-reference notebook powered by the Snapdragon X Elite X1E80100 28 W SoC. He compared its performance to an off-the-shelf notebook powered by a 28 W Intel Core Ultra 7 155H "Meteor Lake" processor.

There are three tests that highlight the performance of the key components of the SoCs—CPU, iGPU, and NPU. A Microsoft Visual Studio code compile test sees the Snapdragon X Elite with its 12-core Oryon CPU finish the test in 37 seconds; compared to 54 seconds by the Core Ultra 7 155H with its 6P+8E+2LP CPU. In the 3DMark test, the Adreno 750 iGPU posts identical performance numbers to the Arc Graphics Xe-LPG of the 155H. Where the Snapdragon X Elite dominates the Intel chip is AI inferencing. The UL Procyon test sees the 45 TOPS NPU of the Snapdragon X Elite score 1720 points compared to 476 points by the 10 TOPS AI Boost NPU of the Core Ultra. The Intel machine is using OpenVINO, while the Snapdragon is using Qualcomm SNPE SDK for the test. Don't forget to check out the video review by Erdi Özüağ in the source link below.

Qualcomm Snapdragon 8cx Gen 3 Put Through CPU-Z Bench

Qualcomm Snapdragon 8cx Gen 3 is a high performance Arm SoC designed to compete with Apple M3, with Windows 11 thin and light notebooks and Chromebooks being its main target devices. Microsoft pins a lot of hope in chips such as the Snapdragon 8cx series as they offer comparable performance and battery life to the current crop of M3 MacBooks. A lot of water has flown under the bridge since Windows RT, and the latest crop of Windows 11 for Arm has a much wider PC application support base thanks to official translation layers by Microsoft. CPUID has an Arm64 version of the popular CPU-Z utility, which correctly detects all the specs of the Snapdragon 8cx, but more importantly, has a Bench tab that can test the single- and multithreaded performance of the CPU.

A Chinese tech enthusiast wasted no time in putting the Snapdragon 8cx through this CPU-Z internal benchmark, and found surprisingly good performance numbers. The single-threaded bench, which loads one of chip's four Arm Cortex-X1C P-cores, registers a score of 543.7 points. This is roughly comparable to that of the AMD "Zen 2" or Intel "Comet Lake" x86-64 core. The multithreaded test, which saturates all four P-cores, and all four Cortex-A78C E-cores, springs up 3479.7 points, which again compares to entry/mainstream x86-64 processors from AMD or Intel. Not impressed? How about the fact that the Snapdragon 8cx Gen 3 is a 7 W chip that idles under 2 W for the most part, and can make do with passive cooling, posting scores comparable to 35 W x86 chips that need active cooling?

AMD Zen 5 Details Emerge with GCC "Znver5" Patch: New AVX Instructions, Larger Pipelines

AMD's upcoming family of Ryzen 9000 series of processors on the AM5 platform will carry a new silicon SKU under the hood—Zen 5. The latest revision of AMD's x86-64 microarchitecture will feature a few interesting improvements over its current Zen 4 that it is replacing, targeting the rumored 10-15% IPC improvement. Thanks to the latest set of patches for GNU Compiler Collection (GCC), we have the patch set that proposes changes taking place with "znver5" enablement. One of the most interesting additions to the Zen 5 over the previous Zen 4 is the expansion of the AVX instruction set, mainly new AVX and AVX-512 instructions: AVX-VNNI, MOVDIRI, MOVDIR64B, AVX512VP2INTERSECT, and PREFETCHI.

AVX-VNNI is a 256-bit vector version of the AVX-512 VNNI instruction set that accelerates neural network inferencing workloads. AVX-VNNI delivers the same VNNI instruction set for CPUs that support 256-bit vectors but lack full 512-bit AVX-512 capabilities. AVX-VNNI effectively extends useful VNNI instructions for AI acceleration down to 256-bit vectors, making the technology more efficient. While narrow in scope (no opmasking and extra vector register access compared to AVX-512 VNNI), AVX-VNNI is crucial in spreading VNNI inferencing speedups to real-world CPUs and applications. The new AVX-512 VP2INTERSECT instruction is also making it in Zen 5, as noted above, which has been present only in Intel Tiger Lake processor generation, and is now considered deprecated for Intel SKUs. We don't know the rationale behind this inclusion, but AMD sure had a use case for it.
Return to Keyword Browsing
Nov 21st, 2024 07:38 EST change timezone

New Forum Posts

Popular Reviews

Controversial News Posts