Monday, November 17th 2014
Intel Reveals Details for Future HPC System Building Blocks
Intel Corporation todayannounced several new and enhanced technologies bolstering its leadership in high-performance computing (HPC). These include disclosure of the future generation Intel Xeon Phi processor, code-named Knights Hill, and new architectural and performance details for Intel Omni-Path Architecture, a new high-speed interconnect technology optimized for HPC deployments.
Intel also announced new software releases and collaborative efforts designed to make it easier for the HPC community to extract the full performance potential from current and future Intel industry-standard hardware. Together, these new HPC building blocks and industry collaborations will help to address the dual challenges of extreme scalability and mainstream use of HPC while providing the foundation for a cost-effective path to exascale computing.
News Facts
Intel-based systems account for 86 percent of all supercomputers and 97 percent of all new additions, according to the 44th edition of the TOP500 list announced today. In the two years since the introduction of the first-generation Intel Xeon Phi product family, these many-core, coprocessor-based systems represent 17 percent of the aggregated performance of all TOP500 supercomputers
Intel also announced new software releases and collaborative efforts designed to make it easier for the HPC community to extract the full performance potential from current and future Intel industry-standard hardware. Together, these new HPC building blocks and industry collaborations will help to address the dual challenges of extreme scalability and mainstream use of HPC while providing the foundation for a cost-effective path to exascale computing.
News Facts
- Intel disclosed that its future, third-generation Intel Xeon Phi product family, code-named Knights Hill, will be built using Intel's 10nm process technology and integrate Intel Omni-Path Fabric technology. Knights Hill will follow the upcoming Knights Landing product, with first commercial systems based on Knights Landing expected to begin shipping next year.
- Industry investment in Intel Xeon Phi processors continues to grow with more than 50 providers expected to offer systems built using the new processor version of Knights Landing, with many more systems using the coprocessor PCIe card version of the product. To date, committed customer deals using the Knights Landing processor represent over 100 PFLOPS of system compute.
- Recent high-profile Knights Landing deals include the Trinity supercomputer, a joint effort between Los Alamos and Sandia National Laboratories, and the Cori supercomputer, announced by The U.S. Department of Energy's (DOE) National Energy Research Scientific Computing (NERSC) Center. Additionally, DownUnder GeoSolutions a geosciences company, recently announced the largest commercial deployment of current-generation Intel Xeon Phi coprocessors, and the National Supercomputing Center IT4Innovations announced a new supercomputer that will become the largest Intel Xeon Phi coprocessor-based cluster in Europe.
- Intel disclosed that the Intel Omni-Path Architecture is expected to offer 100 Gbps line speed and up to 56 percent lower switch fabric latency in medium-to-large clusters than InfiniBand alternatives.1 The Intel Omni-Path Architecture will use a 48 port switch chip to deliver greater port density and system scaling compared to the current 36 port InfiniBand alternatives. Providing up to 33 percent more nodes per switch chip is expected to reduce the number of switches required, simplifying system design and reducing infrastructure costs at every scale. Expected system scaling benefits include:
- Up to 1.3x greater port density than InfiniBand - enabling smaller clusters to maximize single switch investments.
- Use up to 50 percent fewer switches than a comparable InfiniBand-based cluster of medium- to large-size.
- Up to 2.3x higher scaling in a two-tier fabric configuration using the same number of switches as an InfiniBand-based cluster - allowing for more cost-effective scaling for very large cluster-based systems.
- Intel launched the Intel Fabric Builders Program to create an ecosystem working together to enable solutions based on the Intel Omni-Path Architecture. An expansion of the Intel Parallel Computing Centers was also announced, bringing the total to more than 40 centers in 13 countries working to modernize more than 70 of HPC's most popular community codes.
- Intel expanded its Lustre* software capabilities with the release of Intel Enterprise Edition for Lustre software v2.2 and Intel Foundation Edition for Lustre software. New appliances using the enhanced Intel Solutions for Lustre software are currently being offered from Dell*, DataDirect Networks* and Dot Hill*.
Intel-based systems account for 86 percent of all supercomputers and 97 percent of all new additions, according to the 44th edition of the TOP500 list announced today. In the two years since the introduction of the first-generation Intel Xeon Phi product family, these many-core, coprocessor-based systems represent 17 percent of the aggregated performance of all TOP500 supercomputers
Comments on Intel Reveals Details for Future HPC System Building Blocks
There are no comments yet.