Wednesday, May 2nd 2018
AMD to Begin Sampling 7nm "Zen 2" Processors Within 2018 for a 2019 Launch
It looks like AMD's processor product launch cycle is on steroids, and keeping up (or even ahead) of Intel. After launching the first 12 nm processor architecture with "Zen+," the company is giving final touches to what it hopes to be the world's first 7 nanometer processor architecture, with "Zen 2." The company will reportedly begin sampling the chip within 2018, to enable volume production and market launch in 2019. Speaking at an investors conference call following the company's Q1-2018 Results release, AMD CEO Dr. Lisa Su confirmed the 7 nm roll-out strategy of her company.
"We have a 7nm GPU based on Vega that we'll sample later this year. We have a 7nm server CPU that we'll sample later this year. And then, obviously, we have a number of products that are planned for 2019 as well. So it's a very, very busy product season for us. But we're pleased with the sort of the execution on the product roadmap," Dr. Su said. Unlike Zen+, Zen 2 is a major update to the company's processor micro-architecture, and presents the company with opportunities to improve several silicon-level specifications, such as the number of cores per CCX, the IPC of each core, the core-count of the die, the cache hierarchy, and the overall energy-efficiency.
Source:
Seeking Alpha
"We have a 7nm GPU based on Vega that we'll sample later this year. We have a 7nm server CPU that we'll sample later this year. And then, obviously, we have a number of products that are planned for 2019 as well. So it's a very, very busy product season for us. But we're pleased with the sort of the execution on the product roadmap," Dr. Su said. Unlike Zen+, Zen 2 is a major update to the company's processor micro-architecture, and presents the company with opportunities to improve several silicon-level specifications, such as the number of cores per CCX, the IPC of each core, the core-count of the die, the cache hierarchy, and the overall energy-efficiency.
101 Comments on AMD to Begin Sampling 7nm "Zen 2" Processors Within 2018 for a 2019 Launch
But if you claim it's "outdated" (apparently AMD managed to go from 15% performance increase to 55% performance increase in under a year), that means that there must be some newer evidence available, proving your claim of 50-55% performance increase. You are more than welcome to present that to us. GloFo also said the 12nm process would supposedly allow for "10% performance increase" with the same power delivery. In reality it barely provided half of thar. So we're talking about "up to 30%" from Ryzen 2, which again can be halved because of various limitations in place (mainly in architecture).
Process node shrinks that do theoretically allow for these performance increases almost never really ever do so in practice; you can look at Intel's different architectures over the past 6-7 years for proof of that, when they steadily went down from 32nm to 14nm. For example Ivy Bridge on 22nm did not provide any of the significant improvement in frequency over Sandy Bridge (same architecture) at 32nm, thought it should have been theoritically possible (in fact, IB had lower frequency). Why? Because you can't just arbitrarly provide theoritical improvements to actual ones. Same with Skylake at 14nm+ vs. Haswell at 22nm. By your logic, the base clock of the 6700K should have been at least 5.5 GHz base, when compared to the 2600K at 3.4 GHz, "because...uh...uh...32nm to 14nm provides over 70% possible performance improvement".
You can even compare GloFo's 7nm LP to TSMC or Samsung's 7nms, which according to specification we have gotten, is very similiar. TSMC's 7nm FinFET process will allow, according to themselves, "~20% speed improvement". How does it make sense that TSMC's 7nm process provides half the performance as GloFo?
Then there's the question about IPC, which you claim to be at least 20%. This claim alone matches/surpasses the performance increase in its entirety, as outlined by AMD, for Zen 2. Please tell how you came to this supendous conclusion, because I most certainly can't wrap my head around it. 20% IPC is an insane of an expectation. As is the idea of 12 full cores at 4.8 GHZ, when AMD can barely achieve 8 cores at 4 GHz on 12nm process with 115W TDP. 4 more cores is 50% more power usage; for the sake of the discussion, let's pretend the 7nm process will be able to offload all that through its better efficiency. 4.8 GHz on top of that is at least another 20% increase (although it certainly is way more, as power usage is not linear with frequency, as we all know) in power. Your estimates are therefore going beyond even GloFo's best-case numbers.
TLDR; everything you write is utter nonsense with no rational argument behind it, and is even debunked by AMD's own roadmap estimates (that so far have neither been updated, nor been proven to be wrong). You claim Zen 2 will perform almost 4x as much as AMD themselves claimed at a time when the Zen 2 was more or less complete.
let's say GF "7nm" will behave like you wrote but you forget intel is also shrinking so the boost will roughly the same
i see different approach from each involved manufacturer (GF&Intel) and at this stage we don't know which one is better; difference can't be high as one has advantage over the other & viceversa
i wouldn't go deeper in this "black-hole" as we just speculate and "troll"
i'll quote something that catch my attention " Node names across the semiconductor industry have lost much of their meaning over the past 10 years " from here :www.eejournal.com/article/life-at-10nm-or-is-it-7nm-and-3nm/
peace and better working nodes!
Btw, I believe your missing link is: www.theverge.com/2015/4/29/8515281/tmd-graphene-materials-science-ultrathin-electronics
To which I will add: en.wikipedia.org/wiki/Single-atom_transistor
But these are all proof of concepts. It's great we know they're possible, but we're realistically looking at at least a decade before we can put those to work. Provided we don't move off semiconductors by then.
Edit: For all those trying to show that the process from one manufacturer is better than the other's: they all source their lithography equipment from the same supplier (ASML), so there can't be significant differences there. You can tune it for better yields or better performance, but the output will still be in the same ballpark.
Now to be clear, these things i mentioned are just some potential improvements that are currently possible according to my limited knowledge. Add to this better frequency scaling and u could have up to 40% in some workloads but more like 15-20% average at best.
The only time 15% was mentioned was in relation to performance, in this case AMD's own slides. That's IPC and frequency combined. I believe IPC increase of Zen 2 to be 6%+ and frequency to be 10%+, conservatively. Except even 15% IPC improvement is quite optimistic for a single generation and sizeable architecture improvement. If AMD is not able to achieve it, which it's most likey they won't, the other place to go is frequency. And why wouldn't they go with increased frequency; the transition to 7nm is literally only beneficial for adding more cores or/and increasing frequency within AMD's current 65-95W TDP constraints. AMD will in any case churn out as much performance as possible with Zen 2; if they got, say, 15% IPC improvement, that's not suddenly going to stop them from tapping into the possibility to increase frequency as well. AMD is breathing down Intel's neck with Zen+; surpassing Intel in SC performance will be huge achievment.
As mentioned, everything points towards the total performance improvement to be around 15% (hopefully a bit more), with IPC increase being in single digits. Any rational discussion about facts demands empirical data at the heart of any argument. That is, statements we make should be based on existing evidence. However much you like/dislike it, AMD's slides is the only and also closest description of Zen 2’s performance we currently have. And it specifically puts Zen 2 to give performance (IPC + clock speed) around 15%. Maybe AMD made significant breakthrough the last year and the end product will be 20%; maybe it will be 25%. We don’t know, and until we get more information, that 15% is the baseline. Correct. 40% was the initial proposed aim by AMD, when they first started making Zen (AMD was obviously not aiming at competing against Intel's latest and best architectures), which then grew to 52%. For Zen there's been no talk about IPC increase (maybe because AMD wants to surprise Intel?) But they did specify it as being complete early this year, with optimization and tuning being the only thing left.
Zen + provided almost 10% increase in performance (3% IPC + 6% frequency). Zen 2 is supposedly providing a bit better performance. My statement about 15% total performance (around 6% IPC and 10% frequency) is well in line with this roadmap -- It's actually somewhat higher, but I'm taking an extra year of tuning into account. I have from the very first moment based myself on this roadmap. Nothing else.
You are more than welcome to provide evidence where AMD ever claimed a 15% IPC improvement with Zen 2. I have a feeling you'll end up finding nothing, just as your initial 40% IPC claim...
Another maybe to pay attention to is the rumor that AMD will make 2, 3, 4, and 6-core CCX variants. This would allow better cache coherency depending on the desired core count, and they could also make a 12-core desktop (or laptop!) chip. This would also allow interesting binning scenarios where they would make 4x2 = 8-Core chips with high clockspeeds and massive amounts of cache.
We will see :)
Imagine if they put HBM or some other L4 system on the edges. This design reminds me a lot of what IBM does with their POWER chips.
Point is that the 7nm fabs AMD uses will be notably better than Intel's 10nm (even if Intel actually gets their 10nm to work lol). It will be comparable to the massive advantage Intel had over AMD in the 22nm vs 28nm days...
www.semiwiki.com/forum/content/7191-iedm-2017-intel-versus-globalfoundries-leading-edge.html
They are fighting a losing battle with their manufacturing processes , sooner or later they'll will have to ditch their own fabs. These nodes have gotten so expensive and difficult to develop that not even someone like Intel can afford to dump so many resources for silicon that they don't sell to anyone else , unlike GloFo , TSMC , Samsung , etc.
As for the time spent on Ryzen 2, it wasn't as much of "lazy" effort as people seem to think. The image being created is that AMD moved much of their focus from Zen+ over to Zen 2. That isn't entirely true. AMD have two different teams dedicated to their respective product lines. The main team that di Ryzen 1 is also doing Ryzen 3 (and possibly also 5), whereas the second team focuses on optimizations in Ryzen 2 and 4.
Nice writeup on comparing processes between different semiconductor businesses.
Really man? History proves you wrong, we're stuck at 4 Ghz mainstream and 5 Ghz OC for over a decade and several node shrinks; Ryzen's optimal power envelope abruptly ends at 4 Ghz too and the 2xxx series is only a baby step forward; it still has a significant TDP increase to achieve a marginally higher boost clock.
Core counts do not yield additional single thread performance but do increase the TDP, and clocking higher costs exponentially more energy. So the potential % gain in perf/watt only exists in each CPU designs' optimal power envelope, not outside it. Combine these facts and I honestly don't understand how you get to these bold statements, or whether you understand CPUs at all.
This 'could' happen in the same way flying unicorns 'could' happen. And then there is this fairy tale of HBM stacks next to separated core dies... Sure, let's pop the HBM on precious pcb area instead of on an interposer the way its meant to be used for good measure :D Keep watching that AdoredTV nonsense... its great entertainment I get it.
I'm saving this thread for next year, when Ryzen 3 comes out. It'll be a fun exercise to prove a few users in this thread wrong. Hopefully, they'll come out wiser from it.
Just in case it isn't clear to you: 4.8GHz < 5.0GHz "barrier" lol