Thursday, June 15th 2023

Intel to Develop Innovative Data Center Cooling Tech - Sponsored by US Energy Department

The U.S. Department of Energy (DOE) has announced its selection of Intel as one of 15 organizations tasked with developing high-performance, energy-efficient cooling solutions for future data centers. The award, announced in May, is part of the COOLERCHIPS program - Cooling Operations Optimized for Leaps in Energy, Reliability, and Carbon Hyperefficiency for Information Processing Systems - supported by DOE's Advanced Research Projects Agency-Energy (ARPA-E). Intel's project, anticipated to be a three-year agreement with $1.71 million in funding, will enable the continuation of Moore's Law by allowing Intel to add more cores and transistors to its highest performance processors, while managing the heat on future devices.

Tejas Shah, principal engineer and lead thermal architect for Intel's Super Compute Platforms Group said: "Immersion cooling is used for its simplicity, sustainability and ease of upgrades. This proposal will enable two-phase immersion cooling to align with the exponential increase in power expected by processors over the next decade."
Why It Matters
Data centers account for approximately 2% of total U.S. electricity consumption, while data center cooling can account for up to 40% of data center energy usage overall. The selected projects seek to reduce the energy necessary to cool data centers and lower the operational carbon footprint associated with this critical infrastructure. To meet the growing demands for computing capacity and performance, future data center processors are expected to require power in excess of 2 kilowatts (kW), which would be challenging to cool with existing technologies. (Today's most powerful chips are fast approaching 1 kW of power use.) The cooling solutions developed through the program will enhance the capabilities of Intel's processors and those produced through Intel Foundry Services, enable the continuation of Moore's law and further Intel's commitment to energy efficiency and sustainable solutions.

How It Works
Intel will collaborate with academic and industry leaders to develop its innovative immersion cooling solution. Intel will oversee the research effort, provide thermal test vehicles for evaluation, and define the form factor and constraints for the next-generation processors, including hot spot locations. Intel's project develops ultra-low-thermal resistance, coral-shaped immersion cooling heat sinks integrated within a 3D vapor chamber cavity to support denser, higher-performance devices. Intel's design will address the challenge of adapting two-phase immersion cooling by optimizing 3D vapor chambers to spread the heat more effectively.

Researchers will 3D-print the novel heat sinks and test the evaporators under a range of operating conditions. The team will pair the new vapor chamber designs with innovative boiling enhancement coatings that reduce thermal resistance by promoting high nucleation site density. Today, fabricators apply these coatings on a flat surface, but research shows a coral-like heat sink design with internal groove-like features has the highest potential for external heat transfer coefficients with two-phase immersion cooling. The team will use computational methods to identify the optimal design for the coral-shaped heat sinks. (For comparison, today's heat sinks are typically made of long, parallel ribs.)

Researchers will integrate these innovations into a two-phase immersion cooling system where servers operate in a specially designed sealed tank that uses a non-conductive liquid medium. The heat generated by servers causes the liquid to boil and generates vapor, which in turn goes through a phase change returning it to a liquid state while removing the heat (much like a home air conditioning system). The team is aiming to improve the capability of the overall two-phase immersion cooling system from 0.025 °C/watt to less than 0.01 °C/watt, or 2.5 times (or more) improvement in efficiency.

More Context: Intel Dives in the Future of Cooling
Source: Intel
Add your own comment

9 Comments on Intel to Develop Innovative Data Center Cooling Tech - Sponsored by US Energy Department

#1
R-T-B
I mean I know Intel has competent engineers, but still, something in me cringes when I hear they picked Intel for this... because their reputation based on just their stock coolers is... uh ... not great.
Posted on Reply
#2
ZoneDymo
tldr sorry, but what is actually innovative? do we keep calling it future cooling and innovation when that crap has been arround and shown for like a decade now? what exactly is new?
Posted on Reply
#3
maxfly
We were just talking about this the other day. Gigabyte has been selling their phase change cooling products to data centers for years. They started to develop a consumer solution at some point but I haven't heard anything about it for years. Apparently their goal of improving overall efficiency must be the new, New.
Posted on Reply
#4
CheapMeat
It's funny that this was posted when there's recent articles talking about how toxic some of these liquids actual are and some in the industry are rethinking it. ServeTheHome has one up right now that goes into detail and they even mention how they'll stop posting about it. It seems like this is a green washing type of campaign now.
Posted on Reply
#5
Tropick
CheapMeatIt's funny that this was posted when there's recent articles talking about how toxic some of these liquids actual are and some in the industry are rethinking it. ServeTheHome has one up right now that goes into detail and they even mention how they'll stop posting about it. It seems like this is a green washing type of campaign now.
Yeah the Novec series of dry waters consists of ridiculously heavily fluorinated ketones. Degrades into a toxic substance (trifluoroacetic acid) when exposed to UV radiation. 3M themselves announced they'd be phasing out production of the chemicals by 2025 due to how tricky it is to handle these engineered liquids safely.

From the Wikipedia article on 3M Novec immersion cooling liquids:
"Novec 649/1230 is classified as a PFAS substance. In December 2022, 3M announced that it would cease production of all PFAS products by 2025, including Novec 649/1230.[14] It degrades to Trifluoroacetic acid (TFA) via photolytic degradation in sunlight. Novec and TFA do not bioaccumulate."
Posted on Reply
#6
Zareek
Call me crazy, but doesn't datacenter waste heat feel like a missed opportunity? All this waste energy, and what are they doing with it? It seems like we could capture and use the heat for something constructive. Is there something I'm missing?
Posted on Reply
#7
chrcoluk
sponsored means subsidy right? :)
Posted on Reply
#8
bubbleawsome
T0@stCOOLERCHIPS program - Cooling Operations Optimized for Leaps in Energy, Reliability, and Carbon Hyperefficiency for Information Processing Systems
:laugh::laugh:
Posted on Reply
#9
ZoneDymo
ZareekCall me crazy, but doesn't datacenter waste heat feel like a missed opportunity? All this waste energy, and what are they doing with it? It seems like we could capture and use the heat for something constructive. Is there something I'm missing?
I hope plenty of smart people are on it to potentially do something with that....but yeah idk.
You would think that heat could be used, electricity from solar panels and the grid to power the servers and then waste heat used to heat up water with some extra from somewhere else for a steam turbine to generate electricity.

Nothing is free, but it seems we could get more efficient.

The heat would atleast be useable in the winter to heat the very building right?
Posted on Reply
Jan 26th, 2025 14:11 EST change timezone

New Forum Posts

Popular Reviews

Controversial News Posts