News Posts matching #Foundry

Return to Keyword Browsing

Intel Confirms Long-Term TSMC Partnership, About 30% of Wafers Outsourced to TSMC

Intel still depends on external partners for its semiconductor manufacturing strategy, with approximately 30% of its wafers currently outsourced to TSMC, according to Intel's Corporate Vice President of Investor Relations. This marks a significant shift from previous plans to eliminate external foundry dependencies, as the company now intends to maintain a permanent multi-foundry approach. "That is probably a high watermark for us," said John Pitzer during a recent investor dialogue with Morgan Stanley analyst Joe Moore. "But to the extent that I think a year ago, we were talking about trying to get that to zero as quickly as possible. That's no longer the strategy." Pitzer elaborated that Intel now views TSMC as "a great supplier" whose continued involvement "creates a good competition between them and Intel Foundry." The company is reportedly evaluating the optimal long-term outsourcing ratio, considering targets between 15-20% of total wafer production.

This strategic adjustment comes amid leadership changes at Intel, with interim CEOs Dave Zinsner and Michelle Johnston Holthaus granted increased decision-making authority while maintaining the core dual approach of developing "a world-class fabless company and a world-class foundry." The executive team focuses on strengthening Intel's product competitiveness before fully optimizing its foundry operations. This pragmatic approach is viewed as recognizing manufacturing realities in the highly complex semiconductor creation. Intel's willingness to leverage TSMC's advanced process technologies reflects both practical necessity and strategic flexibility as the company navigates its manufacturing transformation. Intel's fabrication self-sufficiency goals remain essential but will be balanced against product competitiveness and time-to-market considerations.

Samsung Reportedly Progressing Well with 2 nm GAA Yields, Late 2025 Mass Production Phase Looms

Samsung's foundry operation has experienced many setbacks over the past six months, according to a steady feed of insider reports. Last November, industry moles leaked details of an apparent abandonment of the company's 3 nm Gate-All-Around (GAA) process. Significant yield problems prompted an alleged shift into 2 nm territories, with a next-gen flagship Exynos mobile processor linked to this cutting-edge node. According to a mid-week Chosun Daily article, Samsung and its main rival—TSMC—are in a race to establish decent yields of 2 nm wafers, ahead of predicted "late 2025" mass production kick-offs. The publication's inside track points to the Taiwanese foundry making the most progress (with an estimated 60%), but watchdogs warn that it is too early to bet against the South Korean competitor.

Despite murmurs of current 20 - 30% yields, the Samsung's Hwaseong facility is touted to make "smooth" progress over the coming months. Chosun's sources believe that Samsung engineers struggled to get 3 nm GAA "up to snuff," spending around three years on development endeavors (in vain). In comparison, the making of 2 nm GAA is reported to be less bumpy. A fully upgraded "S3" foundry line is expected to come online by the fourth quarter of this year. An unnamed insider commented on rumors of better than anticipated forward motion chez Samsung Electronics: "there are positive aspects to this as it has shown technological improvements, such as the recent increase in the yield of its 4 nm process by up to 80%." Recent-ish reports suggest that foundry teams have dealt with budget cuts, as well as mounting pressure from company leadership to hit deadlines.

Intel Announces Ohio One Construction Timeline Update

On Feb. 28, 2025, Naga Chandrasekaran, executive vice president, chief global operations officer and general manager of Intel Foundry Manufacturing, sent a message to Intel employees in Ohio updating them on the latest planned construction completion dates for Ohio One Mod 1 and Mod 2 that are under construction in New Albany, Licking County, Ohio. I continue to be impressed by the progress you are driving on our Ohio One campus. We have come a long way since construction began, and I am grateful for all that you've accomplished to lay the groundwork for our future as we make Ohio one of the world's leading hubs of advanced semiconductor manufacturing.

Last quarter, we achieved our "go vertical" milestone when the "basement" level of the fab was completed - and work on the above-ground structure is now underway. The campus has been transformed in ways that bring Ohio's natural beauty to the site. You are also doing so much beyond our campus to support Ohioans in our neighborhood and across the state by creating education and workforce development initiatives, building local business partnerships, and volunteering and investing in the community. I am proud of the impact you are making.

TSMC 2 nm Wafer Output Projected to Reach 80,000 Units Per Month, by End of 2025

Earlier in the year, we heard about TSMC being ahead of the game with its speculated trial production run of cutting-edge 2 nm (N2) silicon. Taiwan's premier foundry company is reportedly prepping its Baoshan and Kaohsiung plants for full-on manufacturing of next-gen chips. The latest insider whispers propose that TSMC is making "rapid" progress on the 2 nm (N2) front, as company engineers have moved onto an "intensive" trial production phase. Taiwan's Economic Daily News has picked up on compelling projections from industry moles; the Hsinchu Baoshan facility's current monthly production capacity is (allegedly) around 5000 to 10,000 2 nm wafers. The other 2 nm-specialist site—Kaohsiung—has reportedly moved into a small-scale appraisal phase.

TSMC declined to comment on recently leaked data points, but they released a general statement (to UDN), emphasizing that: "(our) 2 nm process technology is progressing well and will go into mass production as scheduled in the second half of this year." The Baoshan plant could ramp up to 25,000 2 nm wafers per month, once it moves into a mass production phase. Combined with the same estimated output from its sister site (Kaohsiung), insiders reckon that the combined total could reach 50,000 units per month. Following a predicted successful "second phase" transition, TSMC's most advanced facilities have a "chance" to pump out 80,000 2 nm parts (combined total). The latest murmurs suggest that this milestone could be achieved by the end of 2025. Industry watchdogs believe that Apple will have first access dibs on TSMC's upcoming cutting-edge offerings.

Xbox Introduces Muse: a Generative AI Model for Gameplay

In nearly every corner of our lives, the buzz about AI is impossible to ignore. It's destined to revolutionize how we work, learn, and play. For those of us immersed in the world of gaming—whether as players or creators—the question isn't just how AI will change the game, but how it will ignite new possibilities.

At Xbox, we're all about using AI to make things better (and more fun!) for players and game creators. We want to bring more games to more people around the world and always stay true to the creative vision and artistry of game developers. We believe generative AI can boost this creativity and open up new possibilities. We're excited to announce a generative AI breakthrough, published today in the journal Nature and announced by Microsoft Research, that shows this potential to open up new possibilities—including the opportunity to make older games accessible to future generations of players across new devices and in new ways.

Arc "Celestial" Graphics Card Series Linked to "Xe3P" Architecture & Intel Foundry Process

Last December, Intel revealed that its next-generation "Celestial" GPU architecture was "complete." At the time, Team Blue's Tom "TAP" Petersen revealed: "our IP that's kind of called Xe3, which is the one after Xe2, that's pretty much baked... And so the software teams have a lot of work to do on Xe3. The hardware teams are off on the next thing (aka Xe4/Druid), right." Noted Intel inside info leaker—Raichu—believes that "Celestial" will be: "different from Panther Lake, Celestial dGPU looks like will maybe be based on Xe3P instead of Xe3. I estimate it will (be) based on INTC's process instead of outside." Their Friday evening (February 14) social media declaration suggests that Team Blue is bringing things in-house for the manufacturing of discrete "Celestial" graphics cards; utilizing an Intel Foundry node process, rather than rely on TSMC once more. The latter's foundry produced the Arc "Alchemist" and "Battlemage" dGPU generations.

Intel's rumored "Xe3P" architecture is not a fully known quantity, but reports from last November pointed to the existence of multiple "Xe3" variants; courtesy of information gleaned from an employee's LinkedIn profile. Over the past two weeks, we have witnessed plenty of leaks alluding to future Intel CPU families, but the flow of Arc graphic solutions-related leaks seemingly slowed down around the launch of Intel's budget-friendly "Battlemage" B570 card. Recent-ish insider disclosures have uncovered a possible expansion of the current-gen Arc series, with more SKUs rumored to be on the way. A certain group of industry watchdogs reckon that the unannounced "BGM-G31" GPU will be the basis for higher-end "Battlemage" B-series models, but others believe that options above B580 and B570 are canceled—potentially paving the way for "Xe3P-based" C-series designs later this year, or in 2026.

Samsung Electronics Announces Fourth Quarter and FY 2024 Results

Samsung Electronics today reported financial results for the fourth quarter and the fiscal year 2024. The Company posted KRW 75.8 trillion in consolidated revenue and KRW 6.5 trillion in operating profit in the quarter ended December 31, 2024. For the full year, it reported KRW 300.9 trillion in annual revenue and KRW 32.7 trillion in operating profit.

Although fourth quarter revenue and operating profit decreased on a quarter-on-quarter (QoQ) basis, annual revenue reached the second-highest on record, surpassed only in 2022. Meanwhile, operating profit was down KRW 2.7 trillion QoQ, due to soft market conditions especially for IT products, and an increase in expenditures including R&D. In the first quarter of 2025, while overall earnings improvement may be limited due to weakness in the semiconductors business, the Company aims to pursue growth through increased sales of smartphones with differentiated AI experiences, as well as premium products in the Device eXperience (DX) Division.

First "Made in India" Chip Projected to Launch This Year

Mid-week—at the World Economic Forum in Davos—India's government announced that its native semiconductor industry will release its debut product at some point this year. A similar announcement was made at last year's event, but the reported 28 nm "Made in India" chip would eventually miss its (then) projected December 2024 launch date. Press outlets have focused on Ashwini Vaishnaw's latest prediction for 2025—the Union Minister believes that everything will align neatly for his nation's fledgling semiconductor industry. Additionally, industry stakeholders have expressed confidence in the Semicon India program (initiated back in 2021).

He stated: "Our first 'Made in India' chip will be rolled out this year, and now we are looking at the next phase, where we can get equipment manufacturers, material manufacturers and designers in India...For materials, from parts per million purity, we need to go to parts per billion purity levels. This requires huge transformative changes in the process and the industry is working to achieve this." Vaishnaw is chief of India's AI Mission—this program has set itself some ambitious goals for 2025 and beyond. A primary objective is the founding of a common compute facility that will make use of 10,000 GPUs. The Minister for Electronics and Information Technology outlined the country's next phase of AI industry development—the creation of an indigenous AI model, and homegrown AI chip designs.

Around 20,000 TSMC Wafers Reported Damaged by Earthquake

Earlier this week, Taiwan experienced a magnitude 6.4 earthquake—this seismic event interrupted manufacturing activities at several TSMC chip-making facilities. As a precaution, foundry employees in both Central and Southern Taiwan were evacuated. Production resumed fairly quickly following inspections of crucial infrastructure—no major damage to facilities or equipment was noted. The latest reports suggest that a relatively minor number of TSMC wafers have been affected by the recent quake, while some recalibration of instrumentation is required to get things back on track.

Inside sources reckon that up to 20,000 wafers (possibly 10,000 at a minimum) could be scrapped—assessments are reportedly still underway, but a small proportion of client shipments could be disrupted. News articles point to this total being spread across three affected locations. Fab 18 is a key 3 nm production hub—situated in Taiwan's Southern Science Park, Tainan's Fab 14 specializes in 4 nm and 5 nm processes, and Fab 8 (Hsinchu) takes care of 200 nm. Industry experts believe that TSMC will bounce back quickly, and that the damaged wafer count represents a minor dent in the proverbial armor—on a good day, manufacturing output can reach up to 37,000 units.

Samsung Electronics Reportedly Slashes Foundry Investments in Half

Reports from last November suggested that Samsung Electronics had semi-abandoned its second-generation 3 nm Gate-All-Around (GAA) process, due to missed production goals. Disappointing production yields—as low as 20%—have been floated by industry insiders, they believed (at the time) that the South Korean's foundry teams had simply moved onto developing a next-gen 2 nm manufacturing process. A freshly published news article, courtesy of Business Korea, provides further evidence of a shift to 2 nanometer processes—Samsung's S3 plant in Hwaseong is reportedly in the process of being upgraded (from 3 nm GAA). Insiders believe that new equipment will be installed across the existing production line, requiring a small-scale investment of funds.

The Pyeongtaek 2 (P2) plant is supposedly being prepared for a 1.4 nm test line—targeting a manufacturing capacity of 2000 to 3000 wafers per month. Inside track information suggests that trials will begin within the year. Business Korea's report suggests that Samsung has halved its foundry facility investment budget for 2025—around 5 trillion won, instead of last year's 10 trillion won. The article puts a spotlight on alleged "sluggish customer orders"—the primary factor behind Samsung's decision to slash its chip-making budget by 50%. Competition is fierce at this point in time—TSMC leads the way with its cutting-edge technologies. Taiwan's premier foundry has attracted many high-profile clients away from rival manufacturers. In contrast, industry watchdogs believe that Samsung's struggles have caused "big tech" customers to seek alternate channels.

TSMC CEO Believes American Foundries Will Trail Behind Primary Taiwanese Sites

C.C. Wei, TSMC CEO and Chairman, has shared his latest views regarding his company's North American manufacturing center—Reuters cornered him for comment during a mid-week appearance at a National Taiwan University-held event. The Taiwanese government has recently lowered its "silicon shield"—following much (reported) deliberation over "legal restrictions on transferring leading-edge process technology overseas." This relaxation of rules has TSMC considering a new set of investments for operations outside of Taiwan—with an expansion into advanced node process manufacturing. Currently, 2 nm (N2) is a home turf-speciality—industry experts estimate an expenditure of $28-30 (USD) billion to bring this production technology over to the States. TSMC's CEO has described additional challenges—on top of (and impacting) finances—local bureaucracy is a big one.

Wei stated: "every step requires a permit, and after the permit is approved, it takes at least twice as long as in Taiwan." According Reuters, he reckons that it would be difficult for their North American sites to access the latest technologies ahead of teams in Taiwan. He detailed his company's recruitment of several experts—tasked with talking to local government; about regulatory issues. This was not a cheap undertaking: "we ended up establishing 18,000 rules, which cost us $35 million." TSMC's Arizona production hub will (eventually) consist of three large factories—despite long-term teething problems, Fab 21 is reported to be churning out the first wave of "Made in America" product for a very important client: Apple. Wei expressed positives views when asked about the USA site's prospects—during an earnings conference (Jan 16)—he believes that it will eventually produce the "same quality of chips as in Taiwan," through a "smooth ramp-up process."

Intel Foundry Adds New Customers to RAMP-C Project for US Defense

Intel Foundry has announced the onboarding of new defense industrial base (DIB) customers, Trusted Semiconductor Solutions and Reliable MicroSystems, as part of the third phase of the Rapid Assured Microelectronics Prototypes - Commercial (RAMP-C) efforts under the Trusted & Assured Microelectronics (T&AM) Program in the Office of the Under Secretary of Defense for Research and Engineering (OUSD (R&E)). The RAMP-C project, awarded through the Strategic & Spectrum Missions Advanced Resilient Trusted Systems (S²MARTS) Other Transaction Authority (OTA), allows DIB customers to take advantage of Intel Foundry's leading-edge Intel 18A process technology and advanced packaging for prototypes and high-volume manufacturing of commercial and DIB products for the U.S. Department of Defense (DoD).

"We are very excited to welcome Trusted Semiconductor Solutions and Reliable MicroSystems to the RAMP-C project we are engaged in with the DoD. The collaboration will drive cutting-edge, secure semiconductor solutions essential for our nation's security, economic growth and technological leadership. We are proud of the pivotal role Intel Foundry plays in supporting U.S. national defense and look forward to working closely with our newest DIB customers to enable their innovations with our leading-edge Intel 18A technology," said Kapil Wadhera, vice president of Intel Foundry and general manager of Aerospace, Defense and Government Business Group.

TSMC Reportedly Ahead of Schedule with 2 nm Trial Production at Kaohsiung Fab

TSMC is reportedly making decent progress with its advanced 2 nm (N2) node—industry news pieces from earlier this month pointed to the initiation of production lines across three fabrication sites. Taiwan's Economic Daily News has kept close tabs on these trial runs—insiders have indicated that TSMC's Kaohsiung plant is capable of matching the Baoshan location's targeted manufacturing output (5000 wafers per month, 60 percent yield). Reports suggest that the Kaohsiung 2 nm trial production will start up later this month—much earlier than anticipated.

The Taiwanese chip foundry giant is taking on the challenge of meeting "greater than expected" demand for its new generation 2 nm product—TSMC chairman C.C. Wei has previously stated that its latest and greatest is more popular (pre-launch) with customers than older 3 nm lines. Apple is rumored to be first in line—not a big surprise since TSMC has (supposedly) rolled out the VVIP red carpet for them in recent times. The Economic Daily News article also mentions Qualcomm and MediaTek being next in the queue for N2. TSMC's best foundries are expected to initiate mass production by the end of 2025.

Eighteen New Semiconductor Fabs to Start Construction in 2025

The semiconductor industry is expected to start 18 new fab construction projects in 2025, according to SEMI's latest quarterly World Fab Forecast report. The new projects include three 200 mm and fifteen 300 mm facilities, the majority of which are expected to begin operations from 2026 to 2027.

In 2025, the Americas and Japan are the leading regions with four projects each. The China and Europe & Middle East regions are each tied for third place with three planned construction projects. Taiwan has two planned projects, while Korea and Southeast Asia have one project each for 2025.

Intel Ex-CEO Pat Gelsinger and Current Co-CEO David Zinsner Face Shareholder Lawsuit Over Foundry Services Claims

A significant legal challenge has emerged for Intel's leadership as shareholders aim for the company's representation of its foundry business performance. LR Trust has filed a lawsuit against former CEO Pat Gelsinger and current co-CEO David Zinsner, seeking to return substantial executive compensation amid allegations of misleading statements and financial mismanagement. The lawsuit centers on Intel Foundry Services (IFS), a division that was once positioned as a crucial growth engine for Team Blue. The Intel Foundry, as it is now called, is here referred as Intel Foundry Services, which was its older name back in 2023. According to court documents, LR Trust claims that while Intel's leadership painted an optimistic picture of IFS's trajectory, the division struggled to attract major clients and accumulated significant losses. Gelsinger's $207 million compensation package is at the heart of the dispute, where shareholders now demand that these funds should be returned to the company.

The legal action also targets additional compensation received by Zinsner, arguing that executive rewards were secured through misrepresenting the company's financial health. The allegations point to a troubled 2023, during which Intel's chip production unit reportedly lost $7 billion. These challenges extended into 2024, as increased investments in new fab facilities further strained the company's finances. The lawsuit alleges that executives issued "materially false and misleading" statements regarding cost savings and revenue potential, ultimately driving shareholder value to the very bottom. LR Trust's legal filing accuses Intel's leadership of breaching its financial duties through inadequate internal controls and inaccurate financial disclosures. Beyond seeking the return of executive compensation, the lawsuit pursues damages and legal cost reimbursement, with any recovered funds potentially being returned to Intel's coffers. Intel has yet to respond formally to these allegations. This is just another lawsuit in line as Intel already has several other lawsuits going on, with one recent from August.

Intel Foundry Unveils Technology Advancements at IEDM 2024

Today at the IEEE International Electron Devices Meeting (IEDM) 2024, Intel Foundry unveiled new breakthroughs to help drive the semiconductor industry forward into the next decade and beyond. Intel Foundry showcased new material advancements that help improve interconnections within a chip, resulting in up to 25% capacitance by using subtractive ruthenium. Intel Foundry also was first to report a 100x throughput improvement using a heterogeneous integration solution for advanced packaging to enable ultra-fast chip-to-chip assembly. And to further drive gate-all-around (GAA) scaling, Intel Foundry demonstrated work with silicon RibbonFET CMOS and with gate oxide module for scaled 2D FETs for improved device performance.

"Intel Foundry continues to help define and shape the roadmap for the semiconductor industry. Our latest breakthroughs underscore the company's commitment to delivering cutting-edge technology developed in the U.S., positioning us well to help balance the global supply chain and restore domestic manufacturing and technology leadership with the support of the U.S. CHIPS Act," says Sanjay Natarajan, Intel senior vice president and general manager of Intel Foundry Technology Research.

Intel 18A Yields Are Actually Okay, And The Math Checks Out

A few days ago, we published a report about Intel's 18A yields being at an abysmal 10%. This sparked quite a lot of discussion among the tech community, as well as responses from industry analysts and Intel's now ex-CEO Pat Gelsinger. Today, we are diving into known information about Intel's 18A node and checking out what the yields of possible products could be, using tools such as Die Yield Calculator from SemiAnalysis. First, we know that the defect rate of the 18A node is 0.4 defects per cm². This information is from August, and up-to-date defect rates could be much lower, especially since semiconductor nodes tend to evolve even when they are production-ready. To measure yields, manufacturers use various yield models based on the information they have, like the aforementioned 0.4 defect density. Expressed in defects per square centimeter (def/cm²), it measures manufacturing process quality by quantifying the average number of defects present in each unit area of a semiconductor wafer.

Measuring yields is a complex task. Manufacturers design some smaller chips for mobile and some bigger chips for HPC tasks. Thus, these two would have different yields, as bigger chips require more silicon area and are more prone to defects. Smaller mobile chips occupy less silicon area, and defects occurring on the wafer often yield more usable chips than wasted silicon. Stating that a node only yields x% of usable chips is only one side of the story, as the size of the test production chip is not known. For example, NVIDIA's H100 die is measuring at 814 mm²—a size that is pushing modern manufacturing to its limits. The size of a modern photomask, the actual pattern mask used in printing the design of a chip to silicon wafer, is only 858 mm² (26x33 mm). Thus, that is the limit before exceeding the mask and needing a redesign. At that size, nodes are yielding much less usable chips than something like a 100 mm² mobile chip, where defects don't wreak havoc on the yield curve.

Intel's Foundry Plan Remains the Same, Interim Co-CEO David Zinsner Confirms

Intel's Foundry business is the company's current pain point and probably the reason why the company board of directors forced out ex-CEO Pat Gelsinger. However, the new interim co-CEO, David Zinsner, confirmed that the foundry plan would remain the same. At the UBS technology conference, Zinsner indicated that the company's core strategy remains unchanged and reiterated the forecasts shared in October, highlighting optimism about growth in its PC and server segments. This is a healthy sign that Intel will not lose its foundry subsidiary, which, even though difficult to operate, could be Intel's silver lining with growth opportunities ahead.

Yesterday, we covered the choice of Lip-Bu Tan as Intel's next CEO. However, the new co-CEO, Zinsner, stated, "I'm not in the process, but I'm guessing that the CEO will have some capability around foundry as well as on the product side." A new CEO would be left with a lot of work that, apparently, no one so far can finish. There are speculations that Intel's 18A node is yielding 10% of usable silicon, while Intel's head of foundry business, Naga Chandrasekaran, has noted that 18A node is going through evolution phases to improve final yields and remain profitable, noting that "there's nothing fundamentally challenging on this node now. It is about going through the remaining yield challenges, defect density challenges."

Intel Appoints Semiconductor Leaders Eric Meurice and Steve Sanghi to Board of Directors

Intel Corporation today announced that Eric Meurice, former president, chief executive officer and chairman of ASML Holding N.V., and Steve Sanghi, chairman and interim chief executive officer of Microchip Technology Inc., have been appointed to Intel's board of directors, effective immediately. Both will serve as independent directors.

"Eric and Steve are highly respected leaders in the semiconductor industry whose deep technical expertise, executive experience and operational rigor make them great additions to the Intel board," said Frank D. Yeary, interim executive chair of the Intel board. "As successful CEOs with proven track records of creating shareholder value, they will bring valuable perspectives to the board as the company delivers on its priorities for customers in Intel Products and Intel Foundry, while driving greater efficiency and improving profitability."

Samsung Electronics Announces New Leadership

Samsung Electronics today announced new leadership for the next phase of the Company's growth and to strengthen its future competitiveness, focusing on the semiconductor business.

Young Hyun Jun, Vice Chairman and Head of Device Solutions (DS) Division, was named CEO and will also become the Head of Memory Business and Samsung Advanced Institute of Technology. Jinman Han was promoted to President and will become the Head of Foundry Business, while Seok Woo Nam will become Chief Technology Officer of Foundry Business, a newly-created position.

Intel Reportedly Ramps "Arrow Lake" Orders at TSMC Amid Internal Foundry Struggles

According to Taiwanese media Commercial Times, Intel is significantly increasing its outsourcing of "Arrow Lake" CPU production to TSMC, a strategic move as it grapples with persistent issues in its own foundry division. This decision to outsource a substantial portion of Arrow Lake's production is a significant shift in Intel's strategy, showing the company's rising reliance on external partners to meet quality and performance demands. The Arrow Lake Core Ultra 200 series is Intel's first major outsourcing initiative, in which Intel gave its core IP to third-party foundries, more specifically for a 3 nm node at TSMC. However, it clearly indicates the performance gaps in Intel's own Intel Foundry and the high demand expectations for the new CPUs. Originally intended to use Intel 20A node, Intel shifted focus of 18A node for its products and upcoming foundry customers.

Intel's recent orders with TSMC extend to its upcoming Lunar Lake chips and next-generation Falcon Shores AI GPUs, both of which will use TSMC's 3 nm process. Although Intel's 18A node remains promising, the company relies on current products to sustain its revenue streams, making TSMC's support crucial in ensuring timely shipments. This increased outsourcing reflects Intel's need to maintain competitive performance in the short term. Once its Foundry division meets performance and capacity targets, Intel aims to bring more CPU manufacturing back in-house. However, if anything goes wrong, Intel could face challenges securing sufficient volume from TSMC, as the foundry has longstanding commitments with major clients like Apple, NVIDIA, Qualcomm, and AMD.

Apple and Samsung in the Fray to Acquire Intel: Rumor

Apple and Samsung are reportedly in the fray to acquire Intel, according a spectacular rumor cited by Moore's Law is Dead. This would put the list of companies looking to acquire Intel at 3—Apple, Samsung, and Qualcomm. All three are Arm licensees, with unique characteristics. Apple currently has an Arm-based SoC hardware division that makes custom chips for all its devices, including Macs. Samsung would go on to be an overseas parent company for an American heritage company like Intel, but something like this is not unheard of when you consider examples such as Boston Dynamics being acquired by Hyundai Motors, or Westinghouse Nuclear's acquisition by Japan's Toshiba, before changing hands to Canadian Bookfield Partners. Then there's Qualcomm—the American company is having a bit of a falling out with Arm, and the prospect of owning the x86 IP should be tempting.

Intel retains large amounts of market-share in both the PC processor and server processor markets, however, the company's stock price has been on a downward trend for several quarters now, causing its valuation to drop to levels where any of the other big tech companies can afford to buy it out. The company spent close to $10 billion on a GPU architecture project spanning not just a contemporary graphics architecture to power the integrated graphics solutions of its PC processors, but also discrete gaming GPUs; and most importantly, an AI GPU architecture under the "Ponte Vecchio" project. Intel's Xe-HP AI GPU missed its performance targets or was too late to the market, leaving Intel with a gaping hole that it could only fill with a slew of cost-cutting measures. It doesn't help that Intel Foundry is losing its edge, and none of the logic tiles of Core Ultra "Arrow Lake" processor is made on an Intel foundry node.

Intel Reports Third-Quarter 2024 Financial Results

Intel Corporation today reported third-quarter 2024 financial results.

"Our Q3 results underscore the solid progress we are making against the plan we outlined last quarter to reduce costs, simplify our portfolio and improve organizational efficiency. We delivered revenue above the midpoint of our guidance, and are acting with urgency to position the business for sustainable value creation moving forward," said Pat Gelsinger, Intel CEO. "The momentum we are building across our product portfolio to maximize the value of our x86 franchise, combined with the strong interest Intel 18A is attracting from foundry customers, reflects the impact of our actions and the opportunities ahead."

Samsung Electronics Announces Results for Third Quarter of 2024, 7 Percent Revenue Increase

Samsung Electronics today reported financial results for the third quarter ended Sept. 30, 2024. The Company posted KRW 79.1 trillion in consolidated revenue, an increase of 7% from the previous quarter, on the back of the launch effects of new smartphone models and increased sales of high-end memory products. Operating profit declined to KRW 9.18 trillion, largely due to one-off costs, including the provision of incentives in the Device Solutions (DS) Division. The strength of the Korean won against the U.S. dollar resulted in a negative impact on company-wide operating profit of about KRW 0.5 trillion compared to the previous quarter.

In the fourth quarter, while memory demand for mobile and PC may encounter softness, growth in AI will keep demand at robust levels. Against this backdrop, the Company will concentrate on driving sales of High Bandwidth Memory (HBM) and high-density products. The Foundry Business aims to increase order volumes by enhancing advanced process technologies. Samsung Display Corporation (SDC) expects the demand of flagship products from major customers to continue, while maintaining a quite conservative outlook on its performance. The Device eXperience (DX) Division will continue to focus on premium products, but sales are expected to decline slightly compared to the previous quarter.

Intel and Samsung to Form "Foundry Alliance" to Compete With TSMC, Notes Report

Last time we reported on Samsung Foundry, the company publicly apologized for its setbacks in the memory and foundry divisions, especially as its 3 nm GAA FET node has failed to attract new customers. On the other hand, Intel has also been struggling with its Foundry unit bleeding billions of Dollars in a bid to secure its spot as one of the best foundries for companies to manufacture their chips. There is no better pair than two struggling foundries looking for customers and new ways to conduct research than Intel and Samsung. According to an exclusive by South Korean media outlet "MK," it has reportedly been confirmed that Intel approached Samsung to form a "Foundry Alliance" to boost their foundry business units.

According to the source, Intel CEO Pat Gelsinger is reportedly eager to meet with Samsung Electronics Chairman Lee Jae-yong face-to-face to discuss "comprehensive collaboration in the foundry sector." What exactly will happen between the two is still unclear. Back in 2014, GlobalFoundries and Samsung formed a partnership for 14 nm FinFET offerings, and that was a wide success. Jointly developing a node and offering it in their foundry units could be the target goal for Intel and Samsung. At some level, research and development, as well as sharing valuable manufacturing information on yield improvements, should be beneficial for both to put together the final pieces of the semiconductor puzzle.
Return to Keyword Browsing
Mar 6th, 2025 21:46 EST change timezone

New Forum Posts

Popular Reviews

Controversial News Posts