News Posts matching #IP

Return to Keyword Browsing

NVIDIA Acquisition of Arm Collapses, UK Company to Seek IPO

NVIDIA's long-awaited acquisition of Arm Ltd. is collapsing, confirm Financial Times and Reuters. According to the latest information, the deal is not happening, and the previously agreed terms are no longer valid. As we now know, NVIDIA will have to pay Softbank (Arm's owner) a break-up fee of $1.25 billion, which was the deal that the two settled on if the acquisition fails. NVIDIA has originally planned to purchase Arm for $40 billion. However, the regulators from UK and EU have been blocking the deal from happening on the terms that it would hurt competition and block innovation.

What is next for Arm Ltd. is to go public and list itself on one of the world's biggest stock exchanges, either domestically or overseas in the US. The IPO efforts of Arm are estimated to be worth around $80 billion, representing a double amount of what NVIDIA wanted to purchase the company for.

Update 08:35 UTC: Here is the official press release from NVIDIA and Softbank below:

EuroHPC Joint Undertaking Launches Three New Research and Innovation Projects

The European High Performance Computing Joint Undertaking (EuroHPC JU) has launched 3 new research and innovation projects. The projects aim to bring the EU and its partners in the EuroHPC JU closer to developing independent microprocessor and HPC technology and advance a sovereign European HPC ecosystem. The European Processor Initiative (EPI SGA2), The European PILOT and the European Pilot for Exascale (EUPEX) are interlinked projects and an important milestone towards a more autonomous European supply chain for digital technologies and specifically HPC.

With joint investments of €140 million from the European Union (EU) and the EuroHPC JU Participating States, the three projects will carry out research and innovation activities to contribute to the overarching goal of securing European autonomy and sovereignty in HPC components and technologies, especially in anticipation of the European exascale supercomputers.

JEDEC Publishes HBM3 Update to High Bandwidth Memory (HBM) Standard

JEDEC Solid State Technology Association, the global leader in the development of standards for the microelectronics industry, today announced the publication of the next version of its High Bandwidth Memory (HBM) DRAM standard: JESD238 HBM3, available for download from the JEDEC website. HBM3 is an innovative approach to raising the data processing rate used in applications where higher bandwidth, lower power consumption and capacity per area are essential to a solution's market success, including graphics processing and high-performance computing and servers.

Tachyum Selected for Pan-European Project Enabling 1 AI Zettaflop in 2024

Tachyum today announced that it was selected by the Slovak Republic to participate in the latest submission for the Important Projects of Common European Interest (IPCEI), to develop Prodigy 2 for HPC/AI. Prodigy 2 for HPC/AI will enable 1 AI Zettaflop and more than 10 DP Exaflops computers to support superhuman brain-scale computing by 2024 for under €1B. As part of this selection, Tachyum could receive a 49 million Euro grant to accelerate a second-generation of its Tachyum Prodigy processor for HPC/AI in a 3-nanometer process.

The IPCEI program can make a very important contribution to sustainable economic growth, jobs, competitiveness and resilience for industry and the economy in the European Union. IPCEI will strengthen the EU's open strategic autonomy by enabling breakthrough innovation and infrastructure projects through cross-border cooperation and with positive spill-over effects on the internal market and society as a whole.

Two AMD Ryzen 7000 Series Processors Based on Zen 4 Core Appear: 16-Core and 8-Core SKUs

AMD's Ryzen 7000 series of desktop processors based on the novel Zen 4 core architecture are scheduled to arrive in the second half of 2022. While we are not sure just how big the architectural differences will be going from Zen 3 (with or without 3D V-cache) to the new Zen 4 core, we have some leaked information that confirms the existence of two SKUs that reveal additional details about the processor configuration. In the MilkyWay@Home project, aiming to create a model of the Milky Way galaxy by utilizing countless PCs across the globe, we found two next-generation Ryzen 7000 SKUs. The MilkyWay@Home project isn't a benchmark. However, it is a valuable reference where the next generation processors appeared.

First in line is the 100-000000666-21_N CPU, a codename for an eight-core, sixteen-threaded design. This model should correspond to the AMD Ryzen 7 7800X CPU, a successor to the Ryzen 7 5800X model. Next in line is the 100-000000665-21_N CPU with 16 cores and 32 threads, a successor to the Ryzen 9 5950X named Ryzen 9 7950X. One important thing to note is that these new CPUs feature different level two (L2) cache configurations. With the previous generation 5000 series "Vermeer" processors, the L2 cache was locked at 512 KB per core. However, according to today's leak, the upgraded Zen 4 IP will bring 1024 KB of L2 cache per core, doubling the cache size at one of the fastest levels.

Razer Announces All-New Blade Gaming Laptops at CES 2022

Razer, the leading global lifestyle brand for gamers (Hong Kong Stock Code: 1337), is kicking off 2022 with new Razer Blade gaming laptop models including the Razer Blade 14, Razer Blade 15, and Razer Blade 17. The world's fastest laptops for gamers and creators are equipped with the recently announced NVIDIA GeForce RTX 30 Series Laptop GPUs, up to an RTX 3080 Ti, making the new Blades better than ever, now shipping with Windows 11. All new Razer Blade gaming laptops now also include groundbreaking DDR5 memory, providing blistering clock speeds up to 4800 MHz, an increase in frequency by up to 50% compared to the previous generation.

"The Razer Blade series continues to be the best gaming laptop by providing desktop-class performance on-the-go," says Travis Furst, Senior Director of Razer's Systems business unit. "Additionally, we've enabled creators to work anywhere with gorgeous displays, available NVIDIA Studio drivers, and up to 14-Core CPUs. Users will have the ability to choose any model or configuration that best fits their gaming or creating needs, while getting the latest and greatest in graphics, memory and processing technology."

AMD EPYC Genoa Processors to Feature Up to 12 TB of DDR5 Memory, Maximum Speeds of 5200 MT/s

Just yesterday, thanks to the Linux driver update, we found information stating that AMD's upcoming EPYC Genoa processor generation based on Zen 4 core IP will have a 12-channel memory controller. However, we didn't know how AMD engineered the memory controller of this processor generation and some of its maximum capabilities. However, there is an exciting discovery. According to the report from ComputerBase, with information exclusive to them, AMD will enable up to 12 TB of DDR5 memory spread across 12 memory channels. The processor supports DDR5-5200 memory, but when all 24 memory slots (two per channel) are populated, the DDR5 maximum speed drops to 4000 MT/s.

It is unclear why this is the case, and if any difficulties were designing the controller, so the maximum speed drops when every slot is used. One reassuring thing is that the bandwidth created by 12 memory channels should be sufficient to make up for the lost speed of DDR5 memory reduction.

Imagination launches RISC-V CPU family

Imagination Technologies announces Catapult, a RISC-V CPU product line designed from the ground-up for next-generation heterogeneous compute needs. Based on RISC-V, the open-source CPU architecture, which is transforming processor design, Imagination's Catapult CPUs can be configured for performance, efficiency, or balanced profiles, making them suitable for a wide range of markets.

Leveraging Imagination's 20 years of experience in delivering complex IP solutions, the new CPUs are supported by the rapidly expanding open-standard RISC-V ecosystem, which continues to shake up the embedded CPU industry by offering greater choice. Imagination's entry will enable the rapidly expanding RISC-V ecosystem to add a greater range of product offerings, especially for heterogeneous systems. Now customers have an even wider choice of solutions built on the open RISC-V ISA, avoiding lock-in with proprietary architectures.

SiFive Raises RISC-V performance bar with New Best-in-Class SiFive Performance P650 Processor

SiFive, Inc., the founder and leader of RISC-V computing, today announced the availability of the SiFive Performance P650 processor, the new range-topping member of the SiFive Performance family, which is expected to be the fastest licensable RISC-V processor IP core in the market. The SiFive Performance P650 will enable RISC-V designs for performance-demanding application processor markets from data center to edge, automotive, compute, mobile and more.

"SiFive's mission is to answer the semiconductor industry's call for more processor IP choices. SiFive is singularly focused on bringing innovative processor technology based on the RISC-V architecture to market," said Dr. Yunsup Lee, co-founder and CTO, SiFive. "Since the announcement of the Performance Series of RISC-V cores earlier this year, SiFive has continued to push the limits of what was previously possible with RISC-V. The SiFive Performance P650 processor IP represents our commitment towards relentless execution, delivering significant performance improvements in record time. This announcement is the next step towards our long-term vision of bringing RISC-V processors to all performance-hungry applications."

Qualcomm Says PC Transition to Arm-based Processors is Certain, to Launch High-Performance SoCs in 2023

Qualcomm has been in the game of creating SoCs for the PC market with the company's Snapdragon lineup. These processors mainly were beefed-up versions of their mobile designs and were based on the Arm instruction set architecture (ISA). Microsoft has backed this effort by creation Windows-on-Arm (WoA) project that enables the Windows OS to operate on Arm processors. However, up until now, Qualcomm's designs were not very powerful as they represented a relatively moderate approach to the problem and almost made no sense of purchase compared to the standard laptops equipped with x86 processors from AMD and Intel. This is about to change.

According to the news from Investor Day yesterday, Qualcomm is preparing high-performance Arm SoCs for the PC market. The company has recently acquired Nuvia Inc., a startup focused on creating novel IPs based on Arm ISA. And this is what Qualcomm will use in building its next-generation PC processors. As the company plans, in August of 2022, it should start sampling OEM partners with these new chips, and we will be seeing them in consumers' hands in early 2023. If everything goes as planned, this should represent direct competition to AMD, Intel, and now Apple in the high-end SoC market. After PCs, the company plans to tackle datacenter, mobile, and automotive market.

Intel's Attempts at Acquiring SiFive Fail to Deliver, Company Now Seeks IPO

Back in June, SiFive, a company focusing on providing RISC-V-based IP solutions, received an offer for a takeover from Intel. With a value of over two billion dollars, the company's request was on the table to accept. However, according to the latest report from Bloomberg, SiFive declined an offer and aimed to get an initial public offering or get acquired by an even larger vendor. What made the company reject, you might question?

Well, according to sources familiar with the deal, Intel's offer of two billion USD was not enough, and it interrupted the company's ideologies of operation. SiFive management didn't like how Intel would integrate the company in its roadmaps and decided to stay independent. For now, the company is looking to start an initial public offering or get acquired an even larger company that would respect its vision and guidelines, unlike Intel's offer.

Alibaba Goes Anti-x86: Open-Source RISC-V and 128-Core Arm Server Processors on the Horizon

With the x86 architecture, large hyperscale cloud providers have been experiencing all sorts of troubles, from high power consumption to the high pricing structure of these processors. Companies like Amazon Web Services (AWS) build their processors based on 3rd party instruction set architecture designs. Today, Alibaba, the Chinese giant, has announced the launch of two processors made in-house to serve everything from edge to central server processing. First in line is the RISC-V-based Xuantie series of processors, which can run anything from AliOS, FreeRTOS, RT-Thread, Linux, Android, etc., to other operating systems as well. These processors are open-source, capable of modest processing capabilities, and designed as IPs that anyone can use. You can check them out on T-Head GitHub repositories here.

The other thing that Alibaba announced is the development of a 128-core custom processor based on the Arm architecture. Called Yitian 710 server SoC, TSMC manufactures it on the company on 5 nm semiconductor node. So far, Alibaba didn't reveal any details about the SoC and what Arm cores are used. However, this signifies that the company seeks technology independence from outside sources and wants to take it all in-house. With custom RISC-V processors for lower-power tasks and custom Arm server CPUs, the whole infrastructure is covered. It is just a matter of time before Alibaba starts to replace x86 makers in full. However, given the significant number of chips that the company needs, it may not happen at any sooner date.

Another AMD GPU Designer Joins Intel

Intel is apparently taking its GPU business seriously, at the expense of AMD, as according to an article from CRN, Intel has hired Vineet Goel, former Corporate Vice President GPU architecture, graphics, machine learning and mobile platform at AMD. His new title at Intel is almost as longwinding, as he joined Intel as Vice President and General Manager, GPU architecture and IP engineering.

Goel spent his past five years at AMD and prior to that he was the Director of GPU compute solution and Adreno architecture at Qualcomm, although his first job listed on LinkedIn was as a fellow at AMD. His new position at Intel will have him lead the Xe GPU IP roadmap, or in other words, he'll be the person that decides what kind of tech Intel will be putting in its future GPUs.

Synopsys Accelerates Multi-Die Designs with Industry's First Complete HBM3 IP and Verification Solutions

Synopsys, Inc. today announced the industry's first complete HBM3 IP solution, including controller, PHY, and verification IP for 2.5D multi-die package systems. HBM3 technology helps designers meet essential high-bandwidth and low-power memory requirements for system-on-chip (SoC) designs targeting high-performance computing, AI and graphics applications. Synopsys' DesignWare HBM3 Controller and PHY IP, built on silicon-proven HBM2E IP, leverage Synopsys' interposer expertise to provide a low-risk solution that enables high memory bandwidth at up to 921 GB/s.

The Synopsys verification solution, including Verification IP with built-in coverage and verification plans, off-the-shelf HBM3 memory models for ZeBu emulation, and HAPS prototyping system, accelerates verification from HBM3 IP to SoCs. To accelerate development of HBM3 system designs, Synopsys' 3DIC Compiler multi-die design platform provides a fully integrated architectural exploration, implementation and system-level analysis solution.

European Processor Initiative EPAC 1.0 RISC-V Test Chip Samples Delivered

The European Processor Initiative (EPI) https://www.european-processor-initiative.eu/, a project with 28 partners from 10 European countries, with the goal of making EU achieve independence in HPC chip technologies and HPC infrastructure, is proud to announce that EPAC 1.0 RISC-V Test Chip samples were delivered to EPI and initial tests of their operation were successful.

One key segment of EPI activities is to develop and demonstrate fully European-grown processor IPs based on the RISC-V Instruction Set Architecture, providing power-efficient and high-throughput accelerator cores named EPAC (European Processor Accelerators).

XMG Announces APEX Laptop Family with up to Ryzen 9 5900HX and GeForce RTX 3070 Processors

With the 15.6 and 17.3 inch XMG APEX gaming laptops, XMG is positioning a new model series below its own high-end range consisting of the NEO and PRO series. These new laptops combine mobile AMD eight-core processors up to the Ryzen 9 5900HX with NVIDIA GeForce RTX graphics cards up to the RTX 3070. The company is simultaneously introducing the XMG FOCUS, a new product series in the entry-level segment. Intel's Core i7-11800H and an NVIDIA GeForce RTX 3050 Ti offer decent gaming performance, while good connectivity and memory round off the overall package. All four new models feature an IPS display with 144 Hz.

Until now, the XMG APEX 15 in the older E20 generation represented uncompromising desktop CPU performance, with processors up to the Ryzen 9 3950X in a laptop. Although XMG is already working on a direct successor under a slightly different name, it is unleashing the XMG APEX 15 and APEX 17 of the M21 generation for the time being with the currently fastest eight-core mobile processors from AMD. The laptops are available with an AMD Ryzen 7 5800H as well as with the slightly faster Ryzen 9 5900HX from the 54 watt TDP class, as well as with an NVIDIA GeForce RTX 3070 or RTX 3060 in the respective maximum TGP configuration (RTX 3070: 125 watts plus 15 watts Dynamic Boost 2.0; RTX 3060: 115 watts plus 15 watts Dynamic Boost 2.0).

Tachyum Boots Linux on Prodigy FPGA

Tachyum Inc. today announced that it has successfully executed the Linux boot process on the field-programmable gate array (FPGA) prototype of its Prodigy Universal Processor, in 2 months after taking delivery of the IO motherboard from manufacturing. This achievement proves the stability of the Prodigy emulation system and allows the company to move forward with additional testing before advancing to tape out.

Tachyum engineers were able to perform the Linux boot, execute a short user-mode program and shutdown the system on the fully functional FPGA emulation system. Not only does this successful test prove that the basic processor is stable, but interrupts, exceptions, timing, and system-mode transitions are, as well. This is a key milestone, which dramatically reduces risk, as booting and running large and complex pieces of software like Linux reliably on the Tachyum FPGA processor prototype shows that verification and hardware stability are past the most difficult turning point, and it is now obvious that verification and testing should successfully complete in the coming months. Designers are now shifting their attention to debug and verification processes, running hundreds of trillions of test cycles over the next few months, and running large scale user mode applications with compatibility testing to get the processor to production quality.

Intel Wins US Government Project to Develop Leading-Edge Foundry Ecosystem

The U.S. Department of Defense, through the NSTXL consortium-based S2MARTS OTA, has awarded Intel an agreement to provide commercial foundry services in the first phase of its multi-phase Rapid Assured Microelectronics Prototypes - Commercial (RAMP-C) program. The RAMP-C program was created to facilitate the use of a U.S.-based commercial semiconductor foundry ecosystem to fabricate the assured leading-edge custom and integrated circuits and commercial products required for critical Department of Defense systems. Intel Foundry Services, Intel's dedicated foundry business launched this year, will lead the work.

"One of the most profound lessons of the past year is the strategic importance of semiconductors, and the value to the United States of having a strong domestic semiconductor industry. Intel is the sole American company both designing and manufacturing logic semiconductors at the leading edge of technology. When we launched Intel Foundry Services earlier this year, we were excited to have the opportunity to make our capabilities available to a wider range of partners, including in the U.S. government, and it is great to see that potential being fulfilled through programs like RAMP-C." -Pat Gelsinger, Intel CEO.

AMD Envisions Direct Circuit Slicing for Future 3D Stacked Dies

AMD in its HotChips 33 presentation shed light on the the company's efforts to stay on the cutting edge of 3D silicon packaging technology, especially as rival Intel takes giant strides with 2.5D and 3D packaging on its latest "Ponte Vecchio" and "Sapphire Rapids" packages. The company revealed that it co-developed a pioneering new die-on-die stacking technique with TSMC for its upcoming "Zen 3" CCDs with 3D Vertical Caches, which are 64 MB SRAM dies stacked on top of "Zen 3" CCDs to serve as an extension of the 32 MB on-die L3 cache. The micro-bumps connecting the 3D Vertical Cache die with the CCD are 9-micron in pitch, compared to 10-micron on the production variant of Intel Foveros.

AMD believes that no single packaging technology works for all products, and depend entirely on what it is you're trying to stack. The company spoke on the future of die-on-die stacking. For over a decade, package-on-package stacking has been possible (as in the case of smartphones. Currently, it's possible to put memory-on-logic within a single package, between the logic die and an SRAM die for additional cache memory; a logic die an DRAM for RAM integrated with package; or even logic with NAND flash for extreme-density server devices.

NVIDIA Announces Financial Results for Second Quarter Fiscal 2022

NVIDIA (NASDAQ: NVDA) today reported record revenue for the second quarter ended August 1, 2021, of $6.51 billion, up 68 percent from a year earlier and up 15 percent from the previous quarter, with record revenue from the company's Gaming, Data Center and Professional Visualization platforms. GAAP earnings per diluted share for the quarter were $0.94, up 276 percent from a year ago and up 24 percent from the previous quarter. Non-GAAP earnings per diluted share were $1.04, up 89 percent from a year ago and up 14 percent from the previous quarter.

"NVIDIA's pioneering work in accelerated computing continues to advance graphics, scientific computing and AI," said Jensen Huang, founder and CEO of NVIDIA. "Enabled by the NVIDIA platform, developers are creating the most impactful technologies of our time - from natural language understanding and recommender systems, to autonomous vehicles and logistic centers, to digital biology and climate science, to metaverse worlds that obey the laws of physics.

Intel Books Two 3 nm Processor Orders at TSMC Manufacturing Facilities

Intel's struggles with semiconductor manufacturing have been known for a very long time. Starting from its 10 nm design IP to the latest 7 nm delays, we have seen the company struggle to deliver its semiconductor nodes on time. On the other hand, Intel's competing companies are using 3rd party foundries to manufacture their designs and not worry about the yields of semiconductor nodes. Most of the time, that 3rd party company is Taiwan Semiconductor Manufacturing Company (TSMC). Today, thanks to some reporting from Nikkei Asia, we are learning that Intel is tapping TSMC's capacities to manufacture some of the company's future processors.

Citing sources familiar with the matter, Nikkei notes that: "Intel, America's biggest chipmaker, is working with TSMC on at least two 3-nm projects to design central processing units for notebooks and data center servers in an attempt to regain market share it has lost to Advanced Micro Devices and Nvidia over the past few years. Mass production of these chips is expected to begin by the end of 2022 at the earliest." This means that we could expect to see some of the TSMC manufactured Intel processors by the year 2023/2024.

SiFive Performance P550 Core Sets New Standard as Highest Performance RISC-V Processor IP

SiFive, Inc., the industry leader in RISC-V processors and silicon solutions, today announced launched the new SiFive Performance family of processors. The SiFive Performance family debuts with two new processor cores, the P270, SiFive's first Linux capable processor with full support for the RISC-V vector extension v1.0 rc, and the SiFive Performance P550 core, SiFive's highest performance processor to date. The new SiFive Performance P550 delivers a SPECInt 2006 score of 8.65/GHz, making it the highest performance RISC-V processor available today, and comparable to existing proprietary solutions in the application processor space.

"SiFive Performance is a significant milestone in our commitment to deliver a complete, scalable portfolio of RISC-V cores to customers in all markets who are at the vanguard of SOC design and are dissatisfied with the status quo," said Dr. Yunsup Lee, Co-Founder and CTO of SiFive. "These two new products cover new performance points and a wide range of application areas, from efficient vector processors that easily displace yesterday's SIMD architectures, to the bleeding edge that the P550 represents. SiFive is proud to set the standard for RISC-V processing and is ready to deliver these products to customers today."

ASUSTOR Launches AS-T10G2 10 Gigabit Ethernet Card

The all-new AS-T10G2 is here, bringing increased efficiency and speeds to the much beloved AS-T10G. The AS-T10G2 uses the AQC-107 controller, which offers increased performance, and lower power requirements. Using the Lockerstor 16R Pro, transfer rates were found to be up to 1127 MB/s when reading and 1124 MB/s when writing. The AS-T10G2 also supports IP, TCP, UDP checksum offload to reduce CPU usage for a more efficient experience.

The AS-T10G2 is equipped with a 10 Gbps 8p8c RJ-45 Ethernet port. The AS-T10G2 supports automatic switching between all major Ethernet speeds and is compatible with four lanes of PCI Express 3.0. Pop it into an ASUSTOR NAS running ADM 4.0 or a PC to upgrade network speeds to 10-Gigabit Ethernet. The AS-T10G2 is compatible with both full-height and half-height computers, making it compatible with almost any device featuring a PCI Express slot, ensuring affordable, yet high speed networking for both homes and businesses.

AMD, Samsung Partnership to See Variable Rate Shading, Ray Tracing on Exynos SoC

AMD at its Computex event shed some light on its IP partnership with Samsung. We already knew this was going to be a closer collaboration than most IP licensing deals, as AMD themselves announced this would be a semi-custom solution designed between both companies. AMD CEO Lisa Su described the technology to be embedded in the upcoming Samsung Exynos SoC as being based on RDNA2 - but this likely is just a marketing and clarity perspective on AMD's technology being implemented, since between the design of RDNA2 and the announcement of the Samsung partnership a lot of water has necessarily run under AMD's graphics IP bridge.

Lisa Su did however confirm that two key RDNA2 technologies will find their way into Samsung's Exynos: Variable Rate Shading (VRS) and Raytracing. This isn't he first time VRS has made an appearance on a mobile SoC - it's already been implemented by Qualcomm in the Adreno 660 GPU (part of the Snapdragon 888 SoC design). However, Raytracing does seem to be a first for the SoC market, and Samsung might just edge out competition in its time to market with this technology. more details will certainly be shared as we get closer to the fabled AMD-partnered Exynos release.

AMD Ryzen 8000 Series Processors Based on Zen 5 Architecture Reportedly Codenamed "Granite Ridge"

Today, we have talked about AMD's upcoming Raphael lineup of processors in the article you can find here. However, it seems like the number of leaks on AMD's plans just keeps getting greater. Thanks to the "itacg" on Weibo, we have learned that AMD's Ryzen 8000 desktop series of processors are reportedly codenamed as Granite Ridge. This new codename denotes the Zen 5 based processors, manufactured on TSMC's 3 nm (N3) node. Another piece of information is that AMD's Ryzen 8000 series APUs are allegedly called Strix Point, and they also use the 3 nm technology, along with a combination of Zen 5 and Zen 4 core design IPs. We are not sure how this exactly works out, so we have to wait to find out more.
Return to Keyword Browsing
Dec 21st, 2024 11:02 EST change timezone

New Forum Posts

Popular Reviews

Controversial News Posts