AMD to Build Zen 6 CCD on TSMC 3nm Process, Next-Gen cIOD and sIOD on 4nm
AMD is rumored to be building its next-generation CCD (core complex die) that implements the "Zen 6" microarchitecture, on the 3 nm TSMC N3E foundry node. This is part of a set of rumors from ChipHell forum, which got past rumors on AMD right. Apparently, AMD will also refresh the I/O dies for its next generation process, building them on the 4 nm foundry node, likely the TSMC N4C. The TSMC N3E node offers a 20% speed improvement, over 30% power savings, and approximately 60% logic density increase over TSMC N5, whereas the TSMC N4P node that the company uses for its current "Zen 5" chiplets only clock minor increases in logic density and power over N5. The N3E node relies on EUV double-patterning to achieve its logic density increases.
Perhaps the most interesting piece of news is the new-generation I/O dies. AMD is building these on the 4 nm node, which is a significant step up from the 6 nm node its current I/O dies are built on. On the client side of things, 4 nm will enable AMD to give the new cIOD an updated iGPU, probably based on a newer graphics architecture, such as RDNA 3.5. It will also give AMD the opportunity to integrate an NPU. The company might also update its key I/O components, such as the DDR5 memory controllers, to support higher memory speeds unlocked by CUDIMMs. We don't predict any updates on the PCIe front, since AMD is expected to carry on with Socket AM5, which determines that the cIOD puts out 28 PCIe Gen 5 lanes. At best, the USB interface put out from the processor could be updated to USB4 through an on-die host controller. Over on the server side, the new-generation sIOD will bring much needed increases to the DDR5 memory speeds enabled by clock drivers.
Perhaps the most interesting piece of news is the new-generation I/O dies. AMD is building these on the 4 nm node, which is a significant step up from the 6 nm node its current I/O dies are built on. On the client side of things, 4 nm will enable AMD to give the new cIOD an updated iGPU, probably based on a newer graphics architecture, such as RDNA 3.5. It will also give AMD the opportunity to integrate an NPU. The company might also update its key I/O components, such as the DDR5 memory controllers, to support higher memory speeds unlocked by CUDIMMs. We don't predict any updates on the PCIe front, since AMD is expected to carry on with Socket AM5, which determines that the cIOD puts out 28 PCIe Gen 5 lanes. At best, the USB interface put out from the processor could be updated to USB4 through an on-die host controller. Over on the server side, the new-generation sIOD will bring much needed increases to the DDR5 memory speeds enabled by clock drivers.