News Posts matching #Silicon

Return to Keyword Browsing

RPCS3 PlayStation 3 Emulator Gets Native arm64 Support on Linux, macOS, and Windows

The RPCS3 team has announced the successful implementation of arm64 architecture support for their PlayStation 3 emulator. This development enables the popular emulator to run on a broader range of devices, including Apple Silicon machines, Windows-on-Arm, and even some smaller Arm-based SBC systems like the Raspberry Pi 5. The journey to arm64 support began in late 2021, following the release of Apple's M1 processors, with initial efforts focused on Linux platforms. After overcoming numerous technical hurdles, the development team, led by core developer Nekotekina and graphics specialist kd-11, achieved a working implementation by mid-2024. One of the primary challenges involved adapting the emulator's just-in-time (JIT) compiler for arm64 systems.

The team developed a solution using LLVM's intermediate representation (IR) transformer, which allows the emulator to generate code once for x86-64 and then transform it for arm64 platforms. This approach eliminated the need to maintain separate codebases for different architectures. A particular technical challenge emerged from the difference in memory management between x86 and arm64 systems. While the PlayStation 3 and traditional x86 systems use 4 KB memory pages, modern arm64 platforms typically operate with 16 KB pages. Though this larger page size can improve memory performance in native applications, it presented unique challenges for emulating the PS3's graphics systems, particularly when handling smaller textures and buffers. While the emulator now runs on arm64 devices, performance varies significantly depending on the hardware. Simple applications and homebrew software show promising results, but more demanding commercial games may require substantial computational power beyond what current affordable Arm devices can provide.

AMD Introduces Versal RF Series Adaptive SoCs With Integrated Direct RF-Sampling Converters

AMD today announced the expansion of the AMD Versal adaptive system-on-chip (SoC) portfolio with the introduction of the Versal RF Series that includes the industry's highest compute performance in a single-chip device with integrated direct radio frequency (RF)-sampling data converters.

Versal RF Series offers precise, wideband-spectrum observability and up to 80 TOPS of digital signal processing (DSP) performance in a size, weight, and power (SWaP)-optimized design, targeting RF systems and test equipment applications in the aerospace and defense (A&D) and test and measurement (T&M) markets, respectively.

Quobly Announces Key Milestone for Fault-tolerant Quantum Computing

Quobly, a leading French quantum computing startup, has reported that FD-SOI technology can serve as a scalable platform for commercial quantum computing, leveraging traditional semiconductor manufacturing fabs and CEA-Leti's R&D pilot line.

The semiconductor industry has played a pivotal role in enabling classical computers to scale at cost; it has the same transformative potential for quantum computers, making them commercially scalable and cost competitive. Silicon spin qubits are excellent for achieving fault-tolerant, large-scale quantum computing, registering clock speeds in the µsec range, fidelity above 99% for one and two-qubit gate operations and incomparably small unit cell sizes (in the hundredths of 100 nm²).

NVIDIA Shows Future AI Accelerator Design: Silicon Photonics and DRAM on Top of Compute

During the prestigious IEDM 2024 conference, NVIDIA presented its vision for the future AI accelerator design, which the company plans to chase after in future accelerator iterations. Currently, the limits of chip packaging and silicon innovation are being stretched. However, future AI accelerators might need some additional verticals to gain the required performance improvement. The proposed design at IEDM 24 introduces silicon photonics (SiPh) at the center stage. NVIDIA's architecture calls for 12 SiPh connections for intrachip and interchip connections, with three connections per GPU tile across four GPU tiles per tier. This marks a significant departure from traditional interconnect technologies, which in the past have been limited by the natural properties of copper.

Perhaps the most striking aspect of NVIDIA's vision is the introduction of so-called "GPU tiers"—a novel approach that appears to stack GPU components vertically. This is complemented by an advanced 3D stacked DRAM configuration featuring six memory units per tile, enabling fine-grained memory access and substantially improved bandwidth. This stacked DRAM would have a direct electrical connection to the GPU tiles, mimicking the AMD 3D V-Cache on a larger scale. However, the timeline for implementation reflects the significant technological hurdles that must be overcome. The scale-up of silicon photonics manufacturing presents a particular challenge, with NVIDIA requiring the capacity to produce over one million SiPh connections monthly to make the design commercially viable. NVIDIA has invested in Lightmatter, which builds photonic packages for scaling the compute, so some form of its technology could end up in future NVIDIA accelerators

Intel Foundry Unveils Technology Advancements at IEDM 2024

Today at the IEEE International Electron Devices Meeting (IEDM) 2024, Intel Foundry unveiled new breakthroughs to help drive the semiconductor industry forward into the next decade and beyond. Intel Foundry showcased new material advancements that help improve interconnections within a chip, resulting in up to 25% capacitance by using subtractive ruthenium. Intel Foundry also was first to report a 100x throughput improvement using a heterogeneous integration solution for advanced packaging to enable ultra-fast chip-to-chip assembly. And to further drive gate-all-around (GAA) scaling, Intel Foundry demonstrated work with silicon RibbonFET CMOS and with gate oxide module for scaled 2D FETs for improved device performance.

"Intel Foundry continues to help define and shape the roadmap for the semiconductor industry. Our latest breakthroughs underscore the company's commitment to delivering cutting-edge technology developed in the U.S., positioning us well to help balance the global supply chain and restore domestic manufacturing and technology leadership with the support of the U.S. CHIPS Act," says Sanjay Natarajan, Intel senior vice president and general manager of Intel Foundry Technology Research.

YMTC Produces up to 500,000 Wafers Per Year of Leading-Edge NAND Memory

Chinese semiconductor memory giant YMTC is reportedly manufacturing anywhere between 400-500,000 wafers per year of leading-edge NAND memory, all on domestically produced wafers. According to Mayuki Hashimoto, CEO and Chairman of SUMCO, a Japanese company supplying raw silicon ingots and polished wafers, they are seeing a significant business impact stemming from China's growing self-reliance, especially with companies like YMTC producing its own silicon ingots and polished wafers. This has led to SUMCO's decreasing revenue, where the CEO shared some insights about Chinese ambitions. He added that China is producing about one million wafers of silicon per year, most of which are test wafers. This includes test runs from companies like SMIC and its customers, such as T-Head, HiSilicon, and others.

Last year, YMTC, with its Xtacking 4.0 3D NAND flash architecture, was the first company to achieve a 200+ layer count in the 3D NAND space. The company's product, X4-9070, a 232-layer TLC 3D NAND, uses multiple silicon wafers, hence growing its massive consumption of silicon that is projected to reach 500,000 wafers per year. Given that this is all homegrown silicon from ingots to NAND, this is a massive success for Chinese self-reliance efforts but a huge blow to companies that used to supply Chinese firms with raw materials. Although the company uses custom silicon, it still relies on foreign tools, photoresists, and pre-cursors. There are some indications that YMTC is developing its own tools; it is a plan of a broader strategy in the Chinese semiconductor industry to develop every step of the semiconductor manufacturing process. Huawei is also there to develop EUV scanners, and YMTC could help with its memory business, which is in need of a new tool.

Worldwide Silicon Wafer Shipments Increase 6% in Q3 2024, SEMI Reports

Worldwide silicon wafer shipments increased 5.9% quarter-over-quarter to 3,214 million square inches (MSI) in the third quarter of 2024 and registered 6.8% growth from the 3,010 million square inches recorded during the same quarter last year, the SEMI Silicon Manufacturers Group (SMG) reported in its quarterly analysis of the silicon wafer industry.

"The third quarter wafer shipment results continued the upward trend which started in the second quarter of this year," said Lee Chungwei (李崇偉), Chairman of SEMI SMG and Vice President and Chief Auditor at GlobalWafers. "Inventory levels have declined throughout the supply chain but generally remain high. Demand for advanced wafers used for AI continues to be strong. However, the silicon wafer demand for automotive and industrial uses continues to be muted, while the demand for silicon used for handset and other consumer products has seen some areas of improvement. As a result, 2025 is likely to continue upward trends, but total shipments are not yet expected to return to the peak levels of 2022."

New Arm CPUs from NVIDIA Coming in 2025

According to DigiTimes, NVIDIA is reportedly targeting the high-end segment for its first consumer CPU attempt. Slated to arrive in 2025, NVIDIA is partnering with MediaTek to break into the AI PC market, currently being popularized by Qualcomm, Intel, and AMD. With Microsoft and Qualcomm laying the foundation for Windows-on-Arm (WoA) development, NVIDIA plans to join and leverage its massive ecosystem of partners to design and deliver regular applications and games for its Arm-based processors. At the same time, NVIDIA is also scheduled to launch "Blackwell" GPUs for consumers, which could end up in these AI PCs with an Arm CPU at its core.

NVIDIA's partner, MediaTek, has recently launched a big core SoC for mobile called Dimensity 9400. NVIDIA could use something like that as a base for its SoC and add its Blackwell IP to the mix. This would be similar to what Apple is doing with its Apple Silicon and the recent M4 Max chip, which is apparently the fastest CPU in single-threaded and multithreaded workloads, as per recent Geekbench recordings. For NVIDIA, the company already has a team of CPU designers that delivered its Grace CPU to enterprise/server customers. Using off-the-shelf Arm Neoverse IP, the company's customers are acquiring systems with Grace CPUs as fast as they are produced. This puts a lot of hope into NVIDIA's upcoming AI PC, which could offer a selling point no other WoA device currently provides, and that is tried and tested gaming-grade GPU with AI accelerators.

Infineon Unveils the World's Thinnest Silicon Power Wafer

After announcing the world's first 300-millimeter gallium nitride (GaN) power wafer and opening the world's largest 200-millimeter silicon carbide (SiC) power fab in Kulim, Malaysia, Infineon Technologies AG has unveiled the next milestone in semiconductor manufacturing technology. Infineon has reached a breakthrough in handling and processing the thinnest silicon power wafers ever manufactured, with a thickness of only 20 micrometers and a diameter of 300 millimeters, in a high-scale semiconductor fab. The ultra-thin silicon wafers are only a quarter as thick as a human hair and half as thick as current state-of-the-art wafers of 40-60 micrometers.

"The world's thinnest silicon wafer is proof of our dedication to deliver outstanding customer value by pushing the technical boundaries of power semiconductor technology," said Jochen Hanebeck, CEO at Infineon Technologies. "Infineon's breakthrough in ultra-thin wafer technology marks a significant step forward in energy-efficient power solutions and helps us leverage the full potential of the global trends decarbonization and digitalization. With this technological masterpiece, we are solidifying our position as the industry's innovation leader by mastering all three relevant semiconductor materials: Si, SiC and GaN."

Ultra Accelerator Link Consortium Plans Year-End Launch of UALink v1.0

Ultra Accelerator Link (UALink ) Consortium, led by Board Members from AMD, Amazon Web Services (AWS), Astera Labs, Cisco, Google, Hewlett Packard Enterprise (HPE), Intel, Meta and Microsoft, have announced the incorporation of the Consortium and are extending an invitation for membership to the community. The UALink Promoter Group was founded in May 2024 to define a high-speed, low-latency interconnect for scale-up communications between accelerators and switches in AI pods & clusters. "The UALink standard defines high-speed and low latency communication for scale-up AI systems in data centers"

TSMC Arizona Achieves 4% Higher Yields Than Taiwanese Facilities, Marking Progress for US Silicon Manufacturing

The American semiconductor landscape reached a significant milestone as TSMC's new Arizona manufacturing facility demonstrated remarkable production efficiency, exceeding its Taiwanese counterparts by 4% in yield rates. This achievement, revealed at a recent industry webinar by the company's US division chief, represents a major step forward in America's push to strengthen domestic chip manufacturing capabilities. Since initiating its 4 nm node production operations this spring, the Phoenix-based facility has demonstrated impressive technical proficiency, achieving production standards that match and surpass TSMC's established Taiwanese facilities. The project, backed by substantial federal support, including $11.6 billion in combined grants and loans plus significant tax incentives, aims to establish three cutting-edge manufacturing plants in Arizona.

The company's global leadership praised the facility's performance, noting its strategic importance in demonstrating TSMC's ability to maintain exceptional manufacturing standards across international locations. This success carries particular weight given the project's earlier hurdles, which included workforce challenges and timeline adjustments that shifted the entire production schedule by approximately one year. This development gains additional significance against industry-wide challenges, particularly as competitors like Intel and Samsung face operational and financial obstacles. The semiconductor giant's plans now extend to potential further expansion, with the Phoenix site capable of hosting up to six manufacturing facilities. Future growth prospects could be enhanced by proposed additional government initiatives supporting domestic chip production.

Global Silicon Wafer Shipments to Remain Soft in 2024 Before Strong Expected Rebound in 2025, SEMI Reports

Global shipments of silicon wafers are projected to decline 2% in 2024 to 12,174 million square inches (MSI) with a strong rebound of 10% delayed until 2025 to reach 13,328 MSI as wafer demand continues to recover from the downcycle, SEMI reported today in its annual silicon shipment forecast.

Strong silicon wafer shipment growth is expected to continue through 2027 to meet increasing demand related to AI and advanced processing, driving improved fab utilization rate for global semiconductor production capacity. Moreover, new applications in advanced packaging and high-bandwidth memory (HBM) production, which require additional wafers, are contributing to the rising need for silicon wafers. Such applications include temporary or permanent carrier wafers, interposers, device separation into chiplets, and memory/logic array separation.

Chinese Companies Claim Breakthrough in Storage-Class Memory and Silicon Photonics

Recent reports from South China Morning Post unveil developments in China's semiconductor industry, with significant progress in two critical areas: advanced memory chips and silicon photonics. These breakthroughs mark important steps in the country's pursuit of technological self-reliance amid global trade tensions. In Wuhan, a startup called Numemory has unveiled a new storage-class memory (SCM) chip. The "NM101" chip boasts an impressive 64 GB capacity, far surpassing the megabyte-range offerings currently dominating the market. This novel chip blends the strengths of traditional DRAM and NAND flash storage, delivering rapid, non-volatile, persistent memory ideal for server and data center applications. The NM101's design prioritizes high capacity, density, and bandwidth while maintaining low latency. These characteristics make it particularly well-suited for data centers and cloud computing infrastructures. Initial reports suggest that storage devices incorporating this SCM technology can write an entire 10 GB high-definition video file in a mere second.

Concurrently, another Wuhan-based institution, JFS Laboratory, has achieved a milestone in silicon photonics research. The state-backed facility successfully merged a laser light source with a silicon chip, a feat previously unrealized in China. This innovation in silicon photonics leverages light signals for data transmission, potentially circumventing the looming physical constraints of traditional electric signal-based chip designs. This accomplishment is viewed as addressing a crucial gap in China's optoelectronics capabilities, which used to lag behind Western chip designers and startups. Using silicon photonics, infrastructure scale-out can be sustained on a much larger scale without significant power consumption increase. While these developments represent significant progress, it's important to note that bridging the gap between laboratory breakthroughs and mass-produced, commercially viable products remains a substantial challenge. The path from research success to market dominance is often long and complex, requiring sustained investment and further technological refinement.

Alphawave Semi Launches Industry's First 3nm UCIe IP with TSMC CoWoS Packaging

Alphawave Semi, a global leader in high-speed connectivity and compute silicon for the world's technology infrastructure, has launched the industry's first 3 nm successful silicon bring-up of Universal Chiplet Interconnect Express (UCIe) Die-to-Die (D2D) IP with TSMC's Chip-on-Wafer-on-Substrate (CoWoS) advanced packaging technology.

The complete PHY and Controller subsystem was developed in collaboration with TSMC and targets applications such as hyperscaler, high-performance computing (HPC) and artificial intelligence (AI).

Bump Pitch Transformers Will Revolutionize Advanced 2.5D IC Packaging

Dr. Larry Zu, Founder and CEO of Sarcina Technology, the Application Specific Advanced Packaging (ASAP) Design Service and Production leader, predicted that recent Bump Pitch Transformer (BPT) designs will speed 2.5D IC advanced packaging adoption to meet the red-hot demand for AI innovation. In remarks made in the Keysight Theater at the 61st Design Automation Conference, he envisioned new BPT technology paving the way for new artificial intelligence computing opportunities.

"We believe that the Bump Pitch Transformer architecture will accelerate the growth rate of 2.5D semiconductor packages that are key to meeting the explosive demand for AI-driven computing capabilities," Dr. Zu said during his address in the Keysight Theater.

STMicroelectronics to Build the World's First Fully Integrated Silicon Carbide Facility in Italy

STMicroelectronics, a global semiconductor leader serving customers across the spectrum of electronics applications, announces a new high-volume 200 mm silicon carbide ("SiC") manufacturing facility for power devices and modules, as well as test and packaging, to be built in Catania, Italy. Combined with the SiC substrate manufacturing facility being readied on the same site,these facilities will form ST's Silicon Carbide Campus, realizing the Company's vision of a fully vertically integrated manufacturing facility for the mass production of SiC on one site.The creation of the new Silicon Carbide Campus is a key milestone to support customers for SiC devices across automotive, industrial and cloud infrastructure applications, as they transition to electrification and seek higher efficiency.

"The fully integrated capabilities unlocked by the Silicon Carbide Campus in Catania will contribute significantly to ST's SiC technology leadership for automotive and industrial customers through the next decades," said Jean-Marc Chery, President and Chief Executive Officer of STMicroelectronics. "The scale and synergies offered by this project will enable us to better innovate with high-volume manufacturing capacity, to the benefit of our European and global customers as they transition to electrification and seek more energy efficient solutions to meet their decarbonization goals."
STMicroelectronics Italy

Apple M4 Chip Benchmarked: 22% Faster Single-Core and 25% Faster Multi-Core Performance

Yesterday, Apple launched its next-generation M4 chip based on Apple Silicon custom design. The processor is a fourth-generation design that brings AI capabilities and improved CPU performance. First debuting in an iPad Pro, the CPU has been benchmarked in Geekbench v6. And results seem to be very promising. The latest M4 chip managed to score 3,767 points in single-core tests and 14,677 points in multi-core tests. Compared to the M3 chip, which scores 3,087 points in single-core and 11,702 in multi-core tests, the M4 chip is about 22% faster in single-core and 25% faster in multi-core synthetic benchmarks.

Of course, these results are not real-world use cases, but they give us a hint of what the Apple Silicon design team has been working on. For real-world results, we have to wait a little longer to see reviews and results from devices such as MacBook Pro and MacBook Air, which should have better cooling and possibly better clocks for the chip.

Enthusiast Transforms QLC SSD Into SLC With Drastic Endurance and Performance Increase

A few months ago, we covered proof of overclocking an off-the-shelf 2.5-inch SATA III NAND Flash SSD thanks to Gabriel Ferraz, Computer Engineer and TechPowerUp's SSD database maintainer. Now, he is back with another equally interesting project of modifying a Quad-Level Cell (QLC) SATA III SSD into a Single-Level Cell (SLC) SATA III SSD. Using the Crucial BX500 512 GB SSD, he aimed at transforming the QLC drive into a more endurant and higher-performance SLC. Silicon Motion SM2259XT2 powers the drive of choice with a single-core ARC 32-bit CPU clocked at 550 MHz and two channels running at 800 MT/s (400 MHz) without a DRAM cache. This particular SSD uses four NAND Flash dies from Micron with NY240 part numbers. Two dies are controlled per channel. These NAND Flash dies were designed to operate at 1,600 MT/s (800 MHz) but are limited to only 525 MT/s in this drive in the real world.

The average endurance of these dies is 1,500 P/E cycles in NANDs FortisFlash and about 900 P/E cycles in Mediagrade. Transforming the same drive in the pSLC is bumping those numbers to 100,000 and 60,000, respectively. However, getting that to work is the tricky part. To achieve this, you have to download MPtools for the Silicon Motion SM2259XT2 controller from the USBdev.ru website and find the correct die used in the SSD. Then, the software is modified carefully, and a case-sensitive configuration file is modified to allow for SLC mode, which forces the die to run as a SLC NAND Flash die. Finally, firmware folder must be reached and files need to be moved arround in a way seen in the video.

Apple Preparing M4 Chips with AI Capabilities to Fight Declining Mac Sales

While everyone has been focused on shipping an AI-enhanced product recently, one tech giant didn't appear to be bothered- Apple. However, according to Mark Gurman from Bloomberg, Apple is readying an overhaul of its Apple Silicon M-series chips to embed AI processing capabilities at the processor level. As the report indicates, Apple is preparing an update for late 2024 and early 2025 with the M4 series of chips, which will reportedly feature AI processing units similar to those found in other commercial chips. There should be three levels of the M4 series, with the entry-level M4 codenamed Donan, the mid-level M4 chip codenamed Brava, and the high-end M4 chip codenamed Hydra.

Sales of Apple Macs peaked in 2022; the following year was a sharp decline, and sales have continued to be flat since. The new AI PCs for Windows-based systems have been generating hype from all major vendors, hoping to introduce AI features to end users. However, Apple wants to be part of the revolution, and the company has already scheduled the World Wide Developer Conference for June 10th. At WWDC this year, Apple is supposed to show a suite of AI-powered solutions to enable better user experience and increase productivity. With M4 chips getting AI enhancement, the WWDC announcements will get extra hardware accelerations. However, we must wait for the exact announcements before making further assumptions.

SK hynix Signs Investment Agreement of Advanced Chip Packaging with Indiana

SK hynix Inc., the world's leading producer of High-Bandwidth Memory (HBM) chips, announced today that it will invest an estimated $3.87 billion in West Lafayette, Indiana to build an advanced packaging fabrication and R&D facility for AI products. The project, the first of its kind in the United States, is expected to drive innovation in the nation's AI supply chain, while bringing more than a thousand new jobs to the region.

The company held an investment agreement ceremony with officials from Indiana State, Purdue University, and the U.S. government at Purdue University in West Lafayette on the 3rd and officially announced the plan. At the event, officials from each party including Governor of Indiana Eric Holcomb, Senator Todd Young, Director of the White House Office of Science and Technology Policy Arati Prabhakar, Assistant Secretary of Commerce Arun Venkataraman, Secretary of Commerce State of Indiana David Rosenberg, Purdue University President Mung Chiang, Chairman of Purdue Research Foundation Mitch Daniels, Mayor of city of West Lafayette Erin Easter, Ambassador of the Republic of Korea to the United States Hyundong Cho, Consul General of the Republic of Korea in Chicago Junghan Kim, SK vice chairman Jeong Joon Yu, SK hynix CEO Kwak Noh-Jung and SK hynix Head of Package & Test Choi Woojin, participated.

Silicon Box Announces $3.6 Billion Foundry Deal - New Facility Marked for Northern Italy

Silicon Box, a cutting-edge, advanced panel-level packaging foundry announced its intention to collaborate with the Italian government to invest up to $3.6 billion (€3.2 billion) in Northern Italy, as the site of a new, state-of-the-art semiconductor assembly and test facility. This facility will help meet critical demand for advanced packaging capacity to enable next generation technologies that Silicon Box anticipates by 2028. The multi-year investment will replicate Silicon Box's flagship foundry in Singapore which has proven capability and capacity for the world's most advanced semiconductor packaging solutions, then expand further into 3D integration and testing. When completed, the new facility will support approximately 1,600 Silicon Box employees in Italy. The construction of the facility is also expected to create several thousand more jobs, including eventual hiring by suppliers. Design and planning for the facility will begin immediately, with construction to commence pending European Commission approval of planned financial support by the Italian State.

As well as bringing the most advanced chiplet integration, packaging, and testing to Italy, Silicon Box's manufacturing process is based on panel-level-production; a world leading, first-of-its-kind combination that is already shipping product to customers from its Singapore foundry. Through the investment, Silicon Box has plans for greater innovation and expansion in Europe, and globally. The new integrated production facility is expected to serve as a catalyst for broader ecosystem investments and innovation in Italy, as well as the rest of the European Union.

Marvell Announces Industry's First 2 nm Platform for Accelerated Infrastructure Silicon

Marvell Technology, Inc., a leader in data infrastructure semiconductor solutions, is extending its collaboration with TSMC to develop the industry's first technology platform to produce 2 nm semiconductors optimized for accelerated infrastructure.

Behind the Marvell 2 nm platform is the company's industry-leading IP portfolio that covers the full spectrum of infrastructure requirements, including high-speed long-reach SerDes at speeds beyond 200 Gbps, processor subsystems, encryption engines, system-on-chip fabrics, chip-to-chip interconnects, and a variety of high-bandwidth physical layer interfaces for compute, memory, networking and storage architectures. These technologies will serve as the foundation for producing cloud-optimized custom compute accelerators, Ethernet switches, optical and copper interconnect digital signal processors, and other devices for powering AI clusters, cloud data centers and other accelerated infrastructure.

SSD Overclocking? It can be Done, with Serious Performance Gains

The PC master race has yielded many interesting activities for enthusiasts alike, with perhaps the pinnacle of activities being overclocking. Usually, subjects for overclocking include CPUs, GPUs, and RAM, with other components not actually being capable of overclocking. However, the enthusiast force never seems to settle, and today, we have proof of overclocking an off-the-shelf 2.5-inch SATA III NAND Flash SSD thanks to Gabriel Ferraz, a Computer Engineering graduate, and TechPowerUp's SSD database maintainer. He uses the RZX Pro 256 GB SSD in the video, a generic NAND Flash drive. The RZX Pro uses the Silicon Motion SM2259XT2 single-core, 32-bit ARC CPU running up to 550 MHz. It has two channels at 400 MHz, each with eight chip enable interconnects, allowing up to 16 NAND Flash dies to operate. The SSD doesn't feature a DRAM cache or support a host memory buffer. It has only one NAND Flash memory chip from Kioxia, uses BiCS FLASH 4 architecture, has 96 layers, and has 256 GB capacity.

While this NAND Flash die is rated for up to 400 MHz or 800 MT/s, it only ran at less than half the speed at 193.75 MHz or 387.5 MT/s at default settings. Gabriel acquired a SATA III to USB 3.0 adapter with a JMS578 bridge chip to perform the overclock. This adapter allows hot swapping of SSDs without the need to turn off the PC. He shorted two terminals in the drive's PCB to get the SSD to operate without its default safe mode. Mass Production Tools (MPTools), which OEMs use to flash SSDs, were used to change the firmware settings. Each NAND Flash architecture has its own special version of MPTools. The software directly shows control of the Flash clock, CPU clock, and output driving. However, additional tweaks like Flash IO driving with subdivisions need modifications. Control and Flash On-Die Termination (ODT) and Schmitt window trigger (referring to the Schmitt trigger comparator circuit) also needed a few modifications to make it work.

Synopsys to Acquire Ansys, Creating a Leader in Silicon to Systems Design Solutions

Synopsys (NASDAQ: SNPS) and Ansys (NASDAQ: ANSS) today announced that they have entered into a definitive agreement under which Synopsys will acquire Ansys. Under the terms of the agreement, Ansys shareholders will receive $197.00 in cash and 0.3450 shares of Synopsys common stock for each Ansys share, representing an enterprise value of approximately $35 billion based on the closing price of Synopsys common stock on December 21, 2023. Bringing together Synopsys' pioneering semiconductor electronic design automation (EDA) with Ansys' broad simulation and analysis portfolio will create a leader in silicon to systems design solutions.

"The megatrends of AI, silicon proliferation and software-defined systems are requiring more compute performance and efficiency in the face of growing, systemic complexity. Bringing together Synopsys' industry-leading EDA solutions with Ansys' world-class simulation and analysis capabilities will enable us to deliver a holistic, powerful and seamlessly integrated silicon to systems approach to innovation to help maximize the capabilities of technology R&D teams across a broad range of industries," said Sassine Ghazi, President and CEO of Synopsys. "This is the logical next step for our successful, seven-year partnership with Ansys and I look forward to working closely with Ajei and the talented Ansys team to realize the benefits of this combination for our customers, shareholders and employees."

Huawei Still Ships 5 nm TSMC Chips in its Laptops, Despite US Sanctions

According to the latest teardown from TechInsights, China's biggest technology maker, Huawei, has been shipping laptops with technology supposedly sanctioned by the United States. As the teardown shows, TechInisights has discovered that Huawei's Kirin 9006C processor is manufactured on TSMC's 5 nm semiconductor technology. Originally, the United States have imposed sanctions on Huawei back in 2020, when the government cut off Huawei's access from TSMC's advanced facilities and forbade the use of the latest nodes by Huawei's HiSilicon chip design arm. Today's findings show signs of contradiction, as the Qingyun L540 notebook that launched in December 2023 employs a Kirin 9006C chipset manufactured on a TSMC 5 nm node.

TechInsight's findings indicate that Kirin 9006C assembly and packaging occurred around the third quarter of 2020, whereas the 2020 Huawei sanctions started in the second quarter. Of course, the implication of the sanctions likely prohibited any new orders and didn't prevent Huawei from possibly stockpiling millions of chip orders in its warehouse before they took place. The Chinese giant probably made orders beforehand and is using the technology only now, with the Qingyun L540 laptop being one of the first Kirin 9006C appearances. Some online retailers also point out that the laptop complies with the latest security practices required for the government, which means that they have been in the works since the chip began the early stages of design, way before 2020. We don't know the stockpile quantity, but SMIC's domestic efforts seem insufficient to supply the Chinese market alone. The news that Huawei is still using TSMC chips made SMIC's share go for a 2% free fall on the Hong Kong stock exchange.
Return to Keyword Browsing
Dec 18th, 2024 04:49 EST change timezone

New Forum Posts

Popular Reviews

Controversial News Posts