Thursday, October 12th 2017
Intel Delivers 17-qubit Superconducting Chip with Advanced Packaging to QuTech
Today, Intel announced the delivery of a 17-qubit superconducting test chip for quantum computing to QuTech, Intel's quantum research partner in the Netherlands. The new chip was fabricated by Intel and features a unique design to achieve improved yield and performance. The delivery of this chip demonstrates the fast progress Intel and QuTech are making in researching and developing a working quantum computing system. It also underscores the importance of material science and semiconductor manufacturing in realizing the promise of quantum computing.
Quantum computing, in essence, is the ultimate in parallel computing, with the potential to tackle problems conventional computers can't handle. For example, quantum computers may simulate nature to advance research in chemistry, materials science and molecular modeling - like helping to create a new catalyst to sequester carbon dioxide, or create a room temperature superconductor or discover new drugs. However, despite much experimental progress and speculation, there are inherent challenges to building viable, large-scale quantum systems that produce accurate outputs. Making qubits (the building blocks of quantum computing) uniform and stable is one such obstacle.Qubits are tremendously fragile: Any noise or unintended observation of them can cause data loss. This fragility requires them to operate at about 20 millikelvin - 250 times colder than deep space. This extreme operating environment makes the packaging of qubits key to their performance and function. Intel's Components Research Group (CR) in Oregon and Assembly Test and Technology Development (ATTD) teams in Arizona are pushing the limits of chip design and packaging technology to address quantum computing's unique challenges.
About the size of a quarter (in a package about the size of a half-dollar coin), the new 17-qubit test chip's improved design features include:
Intel's collaborative relationship with QuTech to accelerate advancements in quantum computing began in 2015. Since that time, the collaboration has achieved many milestones - from demonstrating key circuit blocks for an integrated cryogenic-CMOS control system to developing a spin qubit fabrication flow on Intel's 300mm process technology and developing this unique packaging solution for superconducting qubits. Through this partnership, the time from design and fabrication to test has been greatly accelerated.
"With this test chip, we'll focus on connecting, controlling and measuring multiple, entangled qubits towards an error correction scheme and a logical qubit," said professor Leo DiCarlo of QuTech. "This work will allow us to uncover new insights in quantum computing that will shape the next stage of development."
Advancing the Quantum Computing System
Intel and QuTech's work in quantum computing goes beyond the development and testing of superconducting qubit devices. The collaboration spans the entire quantum system - or "stack" - from qubit devices to the hardware and software architecture required to control these devices as well as quantum applications. All of these elements are essential to advancing quantum computing from research to reality.
Also, unlike others, Intel is investigating multiple qubit types. These include the superconducting qubits incorporated into this newest test chip, and an alternative type called spin qubits in silicon. These spin qubits resemble a single electron transistor similar in many ways to conventional transistors and potentially able to be manufactured with comparable processes.
While quantum computers promise greater efficiency and performance to handle certain problems, they won't replace the need for conventional computing or other emerging technologies like neuromorphic computing. We'll need the technical advances that Moore's law delivers in order to invent and scale these emerging technologies.
Intel is investing not only to invent new ways of computing, but also to advance the foundation of Moore's Law, which makes this future possible.
Quantum computing, in essence, is the ultimate in parallel computing, with the potential to tackle problems conventional computers can't handle. For example, quantum computers may simulate nature to advance research in chemistry, materials science and molecular modeling - like helping to create a new catalyst to sequester carbon dioxide, or create a room temperature superconductor or discover new drugs. However, despite much experimental progress and speculation, there are inherent challenges to building viable, large-scale quantum systems that produce accurate outputs. Making qubits (the building blocks of quantum computing) uniform and stable is one such obstacle.Qubits are tremendously fragile: Any noise or unintended observation of them can cause data loss. This fragility requires them to operate at about 20 millikelvin - 250 times colder than deep space. This extreme operating environment makes the packaging of qubits key to their performance and function. Intel's Components Research Group (CR) in Oregon and Assembly Test and Technology Development (ATTD) teams in Arizona are pushing the limits of chip design and packaging technology to address quantum computing's unique challenges.
About the size of a quarter (in a package about the size of a half-dollar coin), the new 17-qubit test chip's improved design features include:
- New architecture allowing improved reliability, thermal performance and reduced radio frequency (RF) interference between qubits.
- A scalable interconnect scheme that allows for 10 to 100 times more signals into and out of the chip as compared to wirebonded chips.
- Advanced processes, materials and designs that enable Intel's packaging to scale for quantum integrated circuits, which are much larger than conventional silicon chips.
Intel's collaborative relationship with QuTech to accelerate advancements in quantum computing began in 2015. Since that time, the collaboration has achieved many milestones - from demonstrating key circuit blocks for an integrated cryogenic-CMOS control system to developing a spin qubit fabrication flow on Intel's 300mm process technology and developing this unique packaging solution for superconducting qubits. Through this partnership, the time from design and fabrication to test has been greatly accelerated.
"With this test chip, we'll focus on connecting, controlling and measuring multiple, entangled qubits towards an error correction scheme and a logical qubit," said professor Leo DiCarlo of QuTech. "This work will allow us to uncover new insights in quantum computing that will shape the next stage of development."
Advancing the Quantum Computing System
Intel and QuTech's work in quantum computing goes beyond the development and testing of superconducting qubit devices. The collaboration spans the entire quantum system - or "stack" - from qubit devices to the hardware and software architecture required to control these devices as well as quantum applications. All of these elements are essential to advancing quantum computing from research to reality.
Also, unlike others, Intel is investigating multiple qubit types. These include the superconducting qubits incorporated into this newest test chip, and an alternative type called spin qubits in silicon. These spin qubits resemble a single electron transistor similar in many ways to conventional transistors and potentially able to be manufactured with comparable processes.
While quantum computers promise greater efficiency and performance to handle certain problems, they won't replace the need for conventional computing or other emerging technologies like neuromorphic computing. We'll need the technical advances that Moore's law delivers in order to invent and scale these emerging technologies.
Intel is investing not only to invent new ways of computing, but also to advance the foundation of Moore's Law, which makes this future possible.
47 Comments on Intel Delivers 17-qubit Superconducting Chip with Advanced Packaging to QuTech
they cool down the qbits to have the most possible stable environment around them. being Interaction between particles destructive from the perspective of information, you need to be sure things are as still as possible.
That said, advancement in insulation materials and quantum error prediction will eventually bring the need for cooling down to acceptable levels. Those advancement will be none the less driven by the use of Quantum Computing Algorithms in chemistry and physics.
That said, I'm not really sure what usage a quantum computer has in a houshold aside from a chip that secures transactions and communications between endpoints. We'll see what will it be.
Or maybe we build a bunch of those, place them in special facilities and only tap into their computing power the way we tap into the cloud today?
Nature and biology has tought us that.
For instance oil doesnt disolve in water, but biology has a way to disolve oil in water.
Imagine someone comes to you, and asks you to build a computer, where the power delivery system also cools the Computer. You would say, you are completly insane, that is IMPOSSIBLE. There is no way the power cables can cool the processor, they themselves get hot.
Well gues what, nature has allready done it, Blood is a liquid that provides energy and cooling in the same package. Blood provides energy, blood cools the System. Isn't that exactly what i have asked you to Imagine in the first place ? It is but totally different aproach to the matter is required to achieve what i have as you.
Same will be with Quantum Computers also. A tottally new aproach is required to solve the cooling Problem, maybe some advances and new knowledge in Quantum physics that makes cooling obsolete.
Nobody every imagined that an object heavier than air can fly, yet that is something trivial today, we can fly objects which weigh tens if not hundred of tonnes.
Speed of light cannot be surpassed, yet there is even a way to circumvent the unsurpassable speed of light to move between distance Point of space by shifting the ship in a nonspace /nontime Dimension, and exit it Trillion of light years away from the entry Point, in just couple of miliseconds worth of time. How do you imagine there are millions of space faring civilization in our galaxy alone ? If all of them were to say, ist imposible to travel faster than light, they would have all been limited to their home solar System.
Nobody ever imagined 100 years ago we could communicate in real time between continents, yet every one can do it today using cell phones
In a similar manner we believe no communication can ocur faster than the Speed of light. But even this can be circumvented, as a matter of fact distance doesnt matter in the sligthest when using the said method, it can be 10 light years, or 10^600 light years distance - which is more than the radius of our universe which has a radius of 2.4x10^64Ly. Even though Speed of light cannot be surpassed, there is a way, and even if you may believe it or not, it is biological in nature.
Once incredible fact to realize is that even if you were to move at the Speed of light, you would not have enough time the whole life of the universe to cover ist radius. Our universe is 46.000 Billion years old, and will only exist for 155500 Billion of years after which it will implode.
Given enough knowledge, every obstacle can be surpassed. Regardless of how impossible it may seem. Make no mistake about that. And in regard to this can be said, that really there is no such Thing as impossible, but only inssuficient knowledge.
Shit: I realized am couple of years to soon with my posting, we still havent discovered FTL travel and communication, but i will leave the info non the less, as an exercise in thought.
www.ias.edu/ideas/2014/ambainis-quantum-computing
And no, you haven't been living under a rock, we're just starting to grasp the possibilities.
And temperature it's not even the only concern , these things also need an insane amount of insulation against electrical noise for the connections that carry the analogue signals.
But yes, this may be "a tad" harder than that. Well, if you know where qubits are (on the chip), maybe you can't reliably tell how many are there. (Not really, but I couldn't resist.)
I think that this is quite enlightening and relevant without all the finger pointing: