Monday, July 30th 2018
Intel Core i9-9900K 3DMark Numbers Emerge: Beats Ryzen 7 2700X
Some of the first benchmark numbers of Intel's upcoming 8-core/16-thread socket LGA1151 processor, the Core i9-9900K, surfaced, from Thai professional overclocker TUM APISAK. A 3DMark database submission sees the processor score 10,719 points in the CPU tests, with an overall score of 9,862 points, when paired with a GeForce GTX 1080 Ti graphics card. According to WCCFTech, the CPU score is about 2,500 points higher than the 6-core/12-thread Core i7-8700K, and about 1,500 points higher than the 8-core/16-thread AMD Ryzen 7 2700X. The tested processor features 8 cores, 16 threads, a nominal clock of 3.10 GHz, and boost frequency of 5.00 GHz, as measured by 3DMark's internal SysInfo module. Intel is expected to launch the Core i9-9900K on 1st August, 2018.
Sources:
TUM APISAK (Twitter), WCCFTech
65 Comments on Intel Core i9-9900K 3DMark Numbers Emerge: Beats Ryzen 7 2700X
And yes, I am aware that at times, both AMD and Intel took pride in their rated TDPs representing the max power draw as opposed to the competitions average. It seems those days a re behind us.
There's no such thing as avg TDP, what you're talking about is probably avg power draw - which may change massively even with a change in boards, as stock voltages can vary.
TDP's generally an indication for cooling the said processor. None of them are official, yet.
Even 8700K will do that easily. Actually, while the base clock is 3.7 GHz, 8700K will run Prime95 Small FFTs (the worst case scenario for Intel CPUs) at 4.0/4.1 GHz within TDP. This matches well with the usual expected all-core boost of 4.3 GHz (default AVX offset being -2).
While Intel does a lot of things, they have very nice specs and technical papers and their products tend to match all that to the letter (although often enough after you manage to decode that "to the letter" part).
There's just no way that results in the same TDP and power envelope as the previous generation, even at the base clocks. When you add in Turbo Boost, you're already way over the 95W TDP for these chips. You were also over it for the 8700K compared to the 7700K, but this is a step up again, in terms of real-world power use.
But hey, competition is good. We missed this kind of nudging for quite few years between AMD and Intel.
Let's say we have a true 100W TDP part with a 100mm square die area, no IHS and we put a cooler onto it capable of dissipating 200W.
If we increased the die size while keeping TDP the same, the temperature might go down a bit, because the heatsink could become more efficient, spreading the heat over a wider area of the fins, meaning less hotspots.
But if we increased that TDP to 200W, and compared the temperatures of the two, with the same heatsink, the temperatures would be the same, because once you hit the thermal capacity of the heatsink, it no longer matters how quickly or evenly the heat can enter the heatsink to be dissipated - the heat can only leave that heatsink so quickly once it's there.
The moment our example die hits 201watts of heat output, we enter a situation where no amount of die area would enable us to cool the chip, because the heatsink is simply unable to dissipate that much. It would be in thermal runaway, slowly getting hotter and hotter until eventually the chip hit TJMax and shut off.
So sure, die size helps cooling - but more heat is still more heat, and you still need a bigger heatsink to be able to dissipate more heat.
The top SKU also has 4mb more L3 Cache than the 8700K, 16 over 12MB, so, again, more heat generation from that.
The heat increase here is not going to be 33% but it is still going to be significant.
Cores+L3 cache ~50% of the die area.
That actually matches to what AMD was saying about 4 cores of both manufacturers being 40-something mm².
So with that, we add 2 cores. We now have 33% more of the parts that comprise 50% of the die area, meaning that on the same manufacturing process the die is now ~16% larger and all of that 16% produces heat.
As I've been saying this whole time - that is not a trivial increase. From whence would anyone get the idea, knowing this, that the TDP could possibly stay at 95W?
And that's even assuming it was actually 95W after the move from Kaby Lake to Coffee Lake, which I personally doubt very much, as wasn't Intel's rationale for Z370 not being backwards compatible, that Z370 and hex cores, needed more power, that entry level Z170 and Z270 boards weren't necessarily able to provide with their VRMs, that were designed for quad core?
It's worth mentioning that we don't know the final clocks and TDP, I sure hope Intel will set more fair TDP.
TDP definition aside, Intel has a tendency to work with certain specific TDP numbers. 105W, 95W, 65W, 35W and they'll try to find the matching frequency/voltage combination for the chip on the efficiency curve.
Still, as always, we shouldn't even try to pinpoint what 9900k will be and how it will perform. We got a ballpark figure, if the leak is genuine. That's all we know and discussing won't help us discover anything else.
Oh I'm also pretty sure this will be priced outside my comfort zone :D
I don't for one millisecond believe that 95W has been the real-world TDP of any Intel chip for quite some time. I think that ideal died with the introduction of per-core boost. (Which IIRC was Turbo Boost 2.0?) Ever since that day, we've been seeing base clocks go down and boost clocks and core counts go up, while TDP has been locked to this mystical 95W figure the entire time.
Your guess is as good as mine as to why, but I rather suspect you know what my guess is.
If you have a 130W CPU under a heatsink that can only dissipate 95W maximum, it doesn't matter whether it's soldered, it doesn't matter how big the die is, it doesn't matter if the IHS is made of a super-conducting alloy with a thermal conductivity of 5000W/m Kelvin. The raw amount of energy is higher than the heatsink can dissipate into the surrounding air, and that heatsink will not be able to keep that CPU cool.
The particular rule I am describing is cast iron. More heat *must* equal more capacity to dissipate that heat, which means larger radiators, larger fin stacks, and faster fans. sure, you could introduce a bottleneck before that point, by using toothpaste TIM, or a wooden heatspreader, but ultimately, getting rid of any bottleneck doesn't allow more dissipation. It allows the full utilisation of the amount of dissipation you had all along. If the heatsink is too small, or the amount of heat is too large, you can't fix that with solder or a better IHS or a larger die area.
The 6700K had a 4GHz base clock. The 7700K was notable for the fact even in stock trim, it's temps would routinely spike to TJMax, and it's base clock was 4.2GHz. With the next gen, we lost 500MHz from base clocks, as the 8700K has a 3.7GHz base clock despite being made on a process 2 generations more optimised than the 6700K. The 9900K is cited to have either a 3.6GHz or 3.1GHz base clock.
They're quite clearly reducing the base clocks and basing the TDP off of those figures, in order to avoid admitting that at full boost, these chips are getting hotter and hotter as they add more cores and push the boost higher. Actually it kinda does. Keeping your chip cooler means there's less voltage leakage, which means you can reduce your voltage while maintaining stability, which means you use less power, which means the chip produces less heat to begin with.
This all relies on manual tweaking and undervolting though. If your chip is running at stock settings then it will simply run on a volt/frequency curve in the BIOS, and temperature won't be accounted for at all.