Monday, December 30th 2019
Intel 10th Gen Core "Comet Lake" Lineup and Specs Revealed
Ahead of a possible reveal in the sidelines of CES, followed by an early-Q2 2020 product-launch, company slides detailing Intel's 10th generation Core desktop processors in the LGA1200 package, codenamed "Comet Lake-S," leaked to the web courtesy Informatica Cero. They confirm that HyperThreading will play a key role, with Intel enabling it across the lineup. The range-topping Core i9 series will be 10-core/20-thread along with 20 MB of L3 cache. The Core i7 series will be 8-core/16-thread, along with 16 MB L3 cache. The all-important Core i5 series will be 6-core/12-thread, equipped with 12 MB of L3 cache. The Core i3 series will have two sub-tiers: i3-103xx series with 4-core/8-thread and 8 MB L3 cache; and i3-101xx series 4-core/8-thread with 6 MB L3 cache.
The Core i7 and Core i9 "Comet Lake" chips will feature native support for dual-channel DDR4-2933, while the Core i5 and Core i3 will make do with native DDR4-2667 support (memory overclocking possible). Besides core/thread counts, and cache size increases, Intel will dial up clock speeds across the board by as much as 300 MHz per SKU (vs. their 9th gen predecessor), and introduce Turbo Boost Max 3.0, which has been exclusive to its HEDT processors. The introduction of Turbo Boost Max 3.0 could also bring about modern favored-core capability (benefiting Windows 10 1909 and later). The classic Turbo Boost is also available. There's also a mysterious new feature called "Thermal Velocity Boost," with its own set of clock-speeds depending on core/thread load. The chips could also feature Modern Standby C10 power-state support (first to the desktop platform). Intel is said to have also added several new core and memory overclocking features on the K-SKUs.Built on a 14 nm-class silicon fabrication node, and featuring the same IPC as "Skylake," the 10th generation Core "Comet Lake" series will rely on aggressive power-management to sustain 65 W TDP rating for most SKUs, but Intel's virtual barrier for 95 W as the TDP number for unlocked K SKUs ends with the 10 generation (the i9-9900KS already breaks that). The 10th generation Core K SKUs have a scorching 125 W TDP rating not just for the 10-core i9-10900K and 8-core i7-10700K, but also the 6-core i5-10600K. The table above details the various SKUs we could make out from the low image-quality slide screenshots.
Sources:
Informatica Cero, VideoCardz
The Core i7 and Core i9 "Comet Lake" chips will feature native support for dual-channel DDR4-2933, while the Core i5 and Core i3 will make do with native DDR4-2667 support (memory overclocking possible). Besides core/thread counts, and cache size increases, Intel will dial up clock speeds across the board by as much as 300 MHz per SKU (vs. their 9th gen predecessor), and introduce Turbo Boost Max 3.0, which has been exclusive to its HEDT processors. The introduction of Turbo Boost Max 3.0 could also bring about modern favored-core capability (benefiting Windows 10 1909 and later). The classic Turbo Boost is also available. There's also a mysterious new feature called "Thermal Velocity Boost," with its own set of clock-speeds depending on core/thread load. The chips could also feature Modern Standby C10 power-state support (first to the desktop platform). Intel is said to have also added several new core and memory overclocking features on the K-SKUs.Built on a 14 nm-class silicon fabrication node, and featuring the same IPC as "Skylake," the 10th generation Core "Comet Lake" series will rely on aggressive power-management to sustain 65 W TDP rating for most SKUs, but Intel's virtual barrier for 95 W as the TDP number for unlocked K SKUs ends with the 10 generation (the i9-9900KS already breaks that). The 10th generation Core K SKUs have a scorching 125 W TDP rating not just for the 10-core i9-10900K and 8-core i7-10700K, but also the 6-core i5-10600K. The table above details the various SKUs we could make out from the low image-quality slide screenshots.
82 Comments on Intel 10th Gen Core "Comet Lake" Lineup and Specs Revealed
nice shintel
AMD does not quite have that problem right now. Temperature or reasonable clock ceiling is fairly close to stock clocks.
Are we getting a new kind of boost every year?
2021 - Vector Unidirectional Boost
2022 - Space Continuum Boost
2023 - Quantum Entanglement Boost
Tl;dr - it is an automatic 100-200MHz boost to clock speeds if CPU temperature is under a certain threshold which I think was < 70°C. Provided it fits into power budget of course.
When Ryzen 3000 came out and its boost behaviour was explored and detailed, there was a comment in Reddit that basically said Intel could technically do the same with their CPUs - feed 1.5V into a core and let it boost to 5.2-5.3 and this should be doable in pretty much any Skylake-derived core. Regardless of the marketing names on the features the table above seems to show they are starting to do exactly that.
Intel 2020: We can warranty NOTHING. "Up to" even for the base frequencies.
65W TDP version i9-10900 and 10 cores at 2.8GHz in 65W is a bit more doubtful but still realistic enough.
I mean, this meshes well with what we know about Intel current CPUs. i9-9900K can do 3.6GHz on 8 cores at 95W, i9-9900GHz can do 3.1 at 65W.
It is true even on 1909, the difference is Windows now juggles the workload within a CCX / CCD for AMD.
As for Intel I am not sure, but most people that got the 9900K just manual OC all the cores so no one really cared about how the boost worked.
For X299 most people got it for multi-threaded work loads so again no one really cared about the favorite core boost.
If I am not mistaken, this is something completely new, not being able to warranty even the base frequencies for a new CPU.
Intel used to state a seperate AVX clock for their higher core count CPUs.
For the Skylake-X refreshes Intel just dropped that information entirely, because it got to the point that Intel cannot really guarantee a clock speed under AVX work loads.
The whole cluster F about MCE, TDP limits and boost duration etc didn't help either.
The size is considerable, there is enough real state for 4 more cores. To get these to clock upwards of 5.2 Ghz they need some heavy binning, this silicon is simply dead weight. The 10 core parts will be released in dismally low numbers. Who are we kidding ? No OEM will use the unlocked parts and interestingly enough the 9400F survived just fine without the iGPU and media components.
9400F does have iGPU on die, it is just disabled. I have been wondering about which die is inside 9400F but it is a locked mainstream CPU and not many enthusiasts care. The few delid images there are seem to show it is (sometimes a new stepping of) 6-core silicon. Other than power allocation, iGPU does not factor into binning. It is on a separate voltage and frequency plane. Memory Controller is also separate enough that it does also not care if iGPU is there. The only problem is "dead" die cost, as you said.
Edit: True, but it does not matter. There is no more power budget on 14nm, even 10 cores is stretching it.
The integrated GPU is there because OEMs demand it for certain products, and for now Intel doesn't make separate dies for the retail market. Probably >99% of all K-SKUs sold never use the integrated graphics anyway, so it's a waste of good silicon. I expect when they move to a more MCM design they will drop the integrated graphics in K-SKUs.