Thursday, September 15th 2022
IPC Comparisons Between Raptor Cove, Zen 4, and Golden Cove Spring Surprising Results
OneRaichu, who has access to engineering samples of both the AMD "Raphael" Ryzen 7000-series, and Intel 13th Gen Core "Raptor Lake," performed IPC comparisons between the two, by disabling E-cores on the "Raptor Lake," fixing the clock speeds of both chips to 3.60 GHz, and testing them across a variety of DDR5 memory configurations. The IPC testing was done with SPEC, a mostly enterprise-relevant benchmark, but one that could prove useful in tracing where the moderately-clocked enterprise processors such as EPYC "Genoa" and Xeon Scalable "Sapphire Rapids" land in the performance charts. OneRaichu also threw in scores obtained from a 12th Gen Core "Alder Lake" processor for this reason, as its "Golden Cove" P-core powers "Sapphire Rapids" (albeit with more L2 cache).
With DDR5-4800 memory, and testing on SPECCPU2017 Rate 1, at 3.60 GHz, the AMD "Zen 4" core ends up with the highest scores in SPECint, topping even the "Raptor Cove" P-core. It scores 6.66, compared to 6.63 total of the "Raptor Cove," and 6.52 of the "Golden Cove." In the SPECfp tests, however, the "Zen 4" core falls beind "Raptor Cove." Here, scores a 9.99 total compared to 9.91 of the "Golden Cove," and 10.21 of the "Raptor Cove." Things get interesting at DDR5-6000, a frequency AMD considers its "sweetspot," The 13th Gen "Raptor Cove" P-core tops SPECint at 6.81, compared to 6.77 of the "Zen 4," and 6.71 of "Golden Cove." SPECfp sees the "Zen 4" fall behind even the "Golden Cove" at 10.04, compared to 10.20 of the "Golden Cove," and 10.46 of "Raptor Cove."The big surprise here is just how good the "Gracemont" E-cores are in SPECint. OneRaichu made a distinction between the "Gracemont" E-cores of "Alder Lake" (GLC-12) and those of "Raptor Lake" (GLC-13,) as the latter have double the amount of shared L2 cache per E-core cluster. The E-core is fast approaching IPC levels comparable to that of "Skylake," which really is Intel's calculation in giving its processors a large number of E-cores next to a small number of P-cores. The idea is that the E-cores will soak up all the moderately-intensive compute workloads and background processes, keeping the P-cores free for gruelling compute-heavy tasks.
Source:
OneRaichu (Twitter)
With DDR5-4800 memory, and testing on SPECCPU2017 Rate 1, at 3.60 GHz, the AMD "Zen 4" core ends up with the highest scores in SPECint, topping even the "Raptor Cove" P-core. It scores 6.66, compared to 6.63 total of the "Raptor Cove," and 6.52 of the "Golden Cove." In the SPECfp tests, however, the "Zen 4" core falls beind "Raptor Cove." Here, scores a 9.99 total compared to 9.91 of the "Golden Cove," and 10.21 of the "Raptor Cove." Things get interesting at DDR5-6000, a frequency AMD considers its "sweetspot," The 13th Gen "Raptor Cove" P-core tops SPECint at 6.81, compared to 6.77 of the "Zen 4," and 6.71 of "Golden Cove." SPECfp sees the "Zen 4" fall behind even the "Golden Cove" at 10.04, compared to 10.20 of the "Golden Cove," and 10.46 of "Raptor Cove."The big surprise here is just how good the "Gracemont" E-cores are in SPECint. OneRaichu made a distinction between the "Gracemont" E-cores of "Alder Lake" (GLC-12) and those of "Raptor Lake" (GLC-13,) as the latter have double the amount of shared L2 cache per E-core cluster. The E-core is fast approaching IPC levels comparable to that of "Skylake," which really is Intel's calculation in giving its processors a large number of E-cores next to a small number of P-cores. The idea is that the E-cores will soak up all the moderately-intensive compute workloads and background processes, keeping the P-cores free for gruelling compute-heavy tasks.
34 Comments on IPC Comparisons Between Raptor Cove, Zen 4, and Golden Cove Spring Surprising Results
Clock speed: neck to neck
The rest are
power consumption
compatibility
price
To actually compare IPC of two similiar CPUs, it is best to bring them as close to the highest common single core frequency as possible.
The higher the core frequency, the higher it will be scewed by buses/IMC/DRAM performance, and higher chance of throttling based on cooling/power requirements (we do not know how power optimised are BIOS-es of platforms used tested benchmarks [or what versions he used]).
Lastly, this isn't meant to be realistic "Joe" benchmark, he is testing in science oriented applications after all.
I think it also importent, dont you?
Also, avilabilty and the cost of the whole packge (DDR, MB, CPU)
That gives you a pretty good view on what to buy for what purpose, just get the core count and freq you need.
Being screwed by IMC/DRAM is part of the game because memory subsystem are part of the CPU design. And memory level parallelism hasn't even get that far to the IMC yet, because MLP is part of the microarchitecture's load/store subsystem. MLP is a microarchitecture feature to park cache-missed memory access aside. "How fast the cores are generating cache misses" vs "how fast memory is resolving them" is guaranteed to have an impact (Imaging the cores are generating them 40% faster than usual, and also becomes 40% more "impatient" for results while the resolution time does not change or even degrades). There are far more quirks than MLP in the microarchitecture that is frequency sensitive (the previous process also puts pressure on other out-of-order mechanisms). So IPC not only needs to be discussed in terms of program, memory, bus, caches, etc. It also needs to be discussed in terms of frequency. There was some IPC claims cheated using a few hundred MHz.
To illustate the point, zen family previously had significantly better MLP than intel.
I still believe the E-cores are going to make a positive mark especially in the mid-range, and AMD is pricing their CPUs wrong and needs correction:
13600K = 7700X = $349
13500 = 7600X = $249
AMD is wishfully thinking that nobody will care about the massive MT lead on the 13600K after it spent the last 5 years preaching that more cores = better.
What happens when the AMD chip.can run at higher frequency with the same cooling and thus outperforms the Intel?
The truth is, we don't know until we get reviews we trust, and that osnt going to happen for awhile yet.
Let's make conclusions.
www.techpowerup.com/review/intel-core-i9-12900ks/20.html
My main issue with MLP you are so focused on, is that those are early platform samples.
There is no point in testing them "to the limit", since they both may still have pretty big bugs inside the Agesa/uCode that can be addressed only after more people start using them.
If they are performance impacting ones, results you did before can only be used as reference, as they do not represent actual performance anymore.
Also unless you're doing some insane overclocks the 7950x will never reach 200 Watt, unlike the 13900k.
And that's the underlying issue and why intel's latest CPUs are hard to keep cool.
When it comes to cooling, what i mean by easy or hard to cool is iso wattage with the same cooler. With a tdp of 170w the 7950x will probably go above 200w even at stock.
By hard to cool eveyrone compares similar coolers in similar use conditions, not watt per watt.
Also if the TDP is 170W it will do at most that at stock.