Sunday, December 4th 2022

Intel Research Fuels Moore's Law and Paves the Way to a Trillion Transistors by 2030
Today, Intel unveiled research breakthroughs fueling its innovation pipeline for keeping Moore's Law on track to a trillion transistors on a package in the next decade. At IEEE International Electron Devices Meeting (IEDM) 2022, Intel researchers showcased advancements in 3D packaging technology with a new 10x improvement in density; novel materials for 2D transistor scaling beyond RibbonFET, including super-thin material just 3 atoms thick; new possibilities in energy efficiency and memory for higher-performing computing; and advancements for quantum computing.
"Seventy-five years since the invention of the transistor, innovation driving Moore's Law continues to address the world's exponentially increasing demand for computing. At IEDM 2022, Intel is showcasing both the forward-thinking and concrete research advancements needed to break through current and future barriers, deliver to this insatiable demand, and keep Moore's Law alive and well for years to come." -Gary Patton, Intel vice president and general manager of Components Research and Design EnablementWhat's Happening at IEDM: Commemorating the 75th anniversary of the transistor, Dr. Ann Kelleher, Intel executive vice president and general manager of Technology Development, will lead a plenary session at IEDM. Kelleher will outline the paths forward for continued industry innovation - rallying the ecosystem around a systems-based strategy to address the world's increasing demand for computing and more effectively innovate to advance at a Moore's Law pace. The session, "Celebrating 75 Years of the Transistor! A Look at the Evolution of Moore's Law Innovation," takes place at 9:45 a.m. PST on Monday, Dec. 5.
Why It Matters: Moore's Law is vital to addressing the world's insatiable computing needs as surging data consumption and the drive toward increased artificial intelligence (AI) brings about the greatest acceleration in demand ever.
Continuous innovation is the cornerstone of Moore's Law. Many of the key innovation milestones for continued power, performance and cost improvements over the past two decades - including strained silicon, Hi-K metal gate and FinFET - in personal computers, graphics processors and data centers started with Intel's Components Research Group. Further research, including RibbonFET gate-all-around (GAA) transistors, PowerVia back side power delivery technology and packaging breakthroughs like EMIB and Foveros Direct, are on the roadmap today.
At IEDM 2022, Intel's Components Research Group showed its commitment to innovating across three key areas to continue Moore's Law: new 3D hybrid bonding packaging technology to enable seamless integration of chiplets; super-thin, 2D materials to fit more transistors onto a single chip; and new possibilities in energy efficiency and memory for higher-performing computing.
How We Do It: Components Research Group researchers have identified new materials and processes that blur the line between packaging and silicon. We reveal critical next steps on the journey to extending Moore's Law to a trillion transistors on a package, including advanced packaging that can achieve an additional 10x interconnect density, leading to quasi-monolithic chips. Intel's materials innovations have also identified practical design choices that can meet the requirements of transistor scaling using novel material just 3 atoms thick, enabling the company to continue scaling beyond RibbonFET.
Intel introduces quasi-monolithic chips for next generation 3D packaging:
Intel researchers work to find better ways to store quantum information by gathering a better understanding of various interface defects that could act as environmental disturbances affecting quantum data.
Source:
Intel
"Seventy-five years since the invention of the transistor, innovation driving Moore's Law continues to address the world's exponentially increasing demand for computing. At IEDM 2022, Intel is showcasing both the forward-thinking and concrete research advancements needed to break through current and future barriers, deliver to this insatiable demand, and keep Moore's Law alive and well for years to come." -Gary Patton, Intel vice president and general manager of Components Research and Design EnablementWhat's Happening at IEDM: Commemorating the 75th anniversary of the transistor, Dr. Ann Kelleher, Intel executive vice president and general manager of Technology Development, will lead a plenary session at IEDM. Kelleher will outline the paths forward for continued industry innovation - rallying the ecosystem around a systems-based strategy to address the world's increasing demand for computing and more effectively innovate to advance at a Moore's Law pace. The session, "Celebrating 75 Years of the Transistor! A Look at the Evolution of Moore's Law Innovation," takes place at 9:45 a.m. PST on Monday, Dec. 5.
Why It Matters: Moore's Law is vital to addressing the world's insatiable computing needs as surging data consumption and the drive toward increased artificial intelligence (AI) brings about the greatest acceleration in demand ever.
Continuous innovation is the cornerstone of Moore's Law. Many of the key innovation milestones for continued power, performance and cost improvements over the past two decades - including strained silicon, Hi-K metal gate and FinFET - in personal computers, graphics processors and data centers started with Intel's Components Research Group. Further research, including RibbonFET gate-all-around (GAA) transistors, PowerVia back side power delivery technology and packaging breakthroughs like EMIB and Foveros Direct, are on the roadmap today.
At IEDM 2022, Intel's Components Research Group showed its commitment to innovating across three key areas to continue Moore's Law: new 3D hybrid bonding packaging technology to enable seamless integration of chiplets; super-thin, 2D materials to fit more transistors onto a single chip; and new possibilities in energy efficiency and memory for higher-performing computing.
How We Do It: Components Research Group researchers have identified new materials and processes that blur the line between packaging and silicon. We reveal critical next steps on the journey to extending Moore's Law to a trillion transistors on a package, including advanced packaging that can achieve an additional 10x interconnect density, leading to quasi-monolithic chips. Intel's materials innovations have also identified practical design choices that can meet the requirements of transistor scaling using novel material just 3 atoms thick, enabling the company to continue scaling beyond RibbonFET.
Intel introduces quasi-monolithic chips for next generation 3D packaging:
- Intel's latest hybrid bonding research presented at IEDM 2022 shows an additional 10 times improvement in density for power and performance over Intel's IEDM 2021 research presentation.
- Continued hybrid bonding scaling to a 3 um pitch achieves similar interconnect densities and bandwidths as those found on monolithic system-on-chip connections.
- Intel demonstrated a gate-all-around stacked nanosheet structure using 2D channel material just 3 atoms thick, while achieving near-ideal switching of transistors on a double-gate structure at room temperature with low leakage current. These are two key breakthroughs needed for stacking GAA transistors and moving beyond the fundamental limits of silicon.
- Researchers also revealed the first comprehensive analysis of electrical contact topologies to 2D materials that could further pave the way for high-performing and scalable transistor channels.
- To use chip area more effectively, Intel redefines scaling by developing memory that can be placed vertically above transistors. In an industry first, Intel demonstrates stacked ferroelectric capacitors that match the performance of conventional ferroelectric trench capacitors and can be used to build FeRAM on a logic die.
- An industry-first device-level model captures mixed phases and defects for improved ferroelectric hafnia devices, marking significant progress for Intel in supporting industry tools to develop novel memories and ferroelectric transistors.
- Bringing the world one step closer to transitioning beyond 5G and solving the challenges of power efficiency, Intel is building a viable path to 300 millimeter GaN-on-silicon wafers. Intel breakthroughs in this area demonstrate a 20 times gain over industry standard GaN and sets an industry record figure-of-merit for high performance power delivery.
- Intel is making breakthroughs on super-energy-efficient technologies, specifically transistors that don't forget, retaining data even when the power is off. Already, Intel researchers have broken two of three barriers keeping the technology from being fully viable and operational at room temperature.
Intel researchers work to find better ways to store quantum information by gathering a better understanding of various interface defects that could act as environmental disturbances affecting quantum data.
62 Comments on Intel Research Fuels Moore's Law and Paves the Way to a Trillion Transistors by 2030
Let's remember what the Moore's "law" actually says: Intel's own manufacturing processes are a proof that the above statement is no longer valid and it takes more than 2 years to double the transistors on a microchip. TBH, I can live fine without Intel. My last Intel CPUs were Core 2 Quad Q9450 from 2008 and Core 2 Duo T5250 from 2008, and I don't plan to buy anything Intel in the future.
lower densities, how do they plan on cooling these projected monsters? Maybe it's time for software to finally catch up with multi core hardware.
it's a theory.
If intel wants to buy my design, I'll gladly sell it for a hefty sum.
They did R&D in CPU architecture yes.
Silicon manufacturing R&D , i think about Bell , IBM , and many other pioneering electronic companies from the past and companies like ASML nowadays.
Intel uses the processes invented by others.
Either that or drop the IHS and use direct die cooling like videocards. Can't wait until morons start chipping the die corner like it used to happen in the Athlon days.
--------------------------------------
Very interested to see how this goes for Intel, will this headline age like milk for them, or turn into fine wine? I won't make any sweeping predications or statements here, just keen to watch and find out.
Some commentators are glorifying Intel but lately I've been purchasing mini PC parts and I noticed how much better AMD has been there, simply due to what they can achieve with their better node.
Also, the naming schemes. Don't get me started on them. There's the uh, what was it called... 1240F? Something like that. Pretty weird CPU, actually, the whole mobile 12th gen stack is weird. They have a lot of efficiency cores but almost no performance cores. Look at this chart, they're actually selling single real core processors for tablet machines. Does that even compete with Snapdragon?
www.ultrabookreview.com/wp-content/uploads/2021/11/mobil-intel-alder-lake-960x485.jpg
Regardless though notebooks should still consume the biggest part of the consumer PC sales... and honestly, AMD CPUs offer so much more down there. Multi threaded doesn't compare even when comparing older AMD chips to the newer gen Intel.
What most people seem to agree though is, Intel's node being inferior. This largely slaps them the smaller the PC gets.
You would not live fine without Intel. Maybe you haven't used one of their CPUs in over a decade, but it's 100% guaranteed that you use multiple technologies developed by them. Intel is much, much more than just a consumer-focused design firm that can't manufacture their own products like AMD or NVIDIA. They have created tech that is so ubiquitous, you don't even know that you use it. I don't see why there is so much distaste for one of the few chip manufacturing companies left in the free world. At least Intel is trying and presenting some degree of success. AMD, NVIDIA, and Apple would cease to function if TSMC disappeared. People give these fabless chip companies WAY too much credit.
That's like saying I don't prefer an i4 for longer distances over a base Model 3, simply because it's a combustion car converted to electric.
In reality the i4 has more range than a base Model 3... the approach is not that relevant if the outcome happens to be superior.