News Posts matching #MCM

Return to Keyword Browsing

"Navi 31" RDNA3 Sees AMD Double Down on Chiplets: As Many as 7

Way back in January 2021, we heard a spectacular rumor about "Navi 31," the next-generation big GPU by AMD, being the company's first logic-MCM GPU (a GPU with more than one logic die). The company has a legacy of MCM GPUs, but those have been a single logic die surrounded by memory stacks. The RDNA3 graphics architecture that the "Navi 31" is based on, sees AMD fragment the logic die into smaller chiplets, with the goal of ensuring that only those specific components that benefit from the TSMC N5 node (6 nm), such as the number crunching machinery, are built on the node, while ancillary components, such as memory controllers, display controllers, or even media accelerators, are confined to chiplets built on an older node, such as the TSMC N6 (6 nm). AMD had taken this approach with its EPYC and Ryzen processors, where the chiplets with the CPU cores got the better node, and the other logic components got an older one.

Greymon55 predicts an interesting division of labor on the "Navi 31" MCM. Apparently, the number-crunching machinery is spread across two GCD (Graphics Complex Dies?). These dies pack the Shader Engines with their RDNA3 compute units (CU), Command Processor, Geometry Processor, Asynchronous Compute Engines (ACEs), Rendering Backends, etc. These are things that can benefit from the advanced 5 nm node, enabling AMD to the CUs at higher engine clocks. There's also sound logic behind building a big GPU with two such GCDs instead of a single large GCD, as smaller GPUs can be made with a single such GCD (exactly why we have two 8-core chiplets making up a 16-core Ryzen processors, and the one of these being used to create 8-core and 6-core SKUs). The smaller GCD would result in better yields per wafer, and minimize the need for separate wafer orders for a larger die (such as in the case of the Navi 21).

AMD Spring 2022 Ryzen Desktop Processor Update Includes Six New Models Besides 5800X3D

In addition to the Ryzen 7 5800X3D, which AMD claims to be the world's fastest gaming processor, AMD gave its desktop processor product-stack a major update, with as many as six other processor models spanning a wide range of price-points that help the company better compete with the bulk of the 12th Gen Core "Alder Lake" processor lineup. The new lineup sees the introduction of the Ryzen 7 5700X (not to be confused with the Ryzen 7 5700G). The 5700X is based on the same "Vermeer" multi-chip module (MCM) as the Ryzen 7 5800X, unlike the 5700G, which is a desktop APU based on the "Cezanne" monolithic silicon. Both "Vermeer" and "Cezanne" are based on the "Zen 3" microarchitecture.

The Ryzen 7 5700X is an 8-core/16-thread processor clocked at 3.40 GHz base and 4.60 GHz boost, compared to the 3.80 GHz base and 4.80 GHz boost frequency of the 5800X. Another key difference is its 65 W TDP, compared to 105 W of the 5800X, which could differentiate its boosting behavior and overclocking headroom compared to the 5800X. AMD is pricing the 5700X at USD $299 (MSRP), making it a competitor to the Intel Core i5-12600KF. Interestingly, the retail PIB (processor-in-box) package of the 5700X does not include a stock cooler despite its 65 W TDP. A 95 W-capable Wraith Spire wouldn't have hurt.

Apple M1 Ultra Chip Uses Multi-Chip Module Design to Create a Massive Software Agnostic Processor

Apple yesterday announced its M1 Ultra processor. It is designed to be one of the most powerful solutions ever envisioned for desktop users, and it leverages some of the already existing technologies. Essentially, the M1 Ultra chip combines two monolithic dies containing M1 Max designs. They are stitched together to create one massive chip behaving in a rather exciting way. To pair the two M1 Max dies together, Apple has designed a package called UltraFusion, which is a die-to-die interposer with more than 10,000 signals. It provides 2.5 TB/s low latency inter-processor bandwidth and enables seamless sharing of information across two dies.

What is more interesting is that this approach, called multi-chip module (MCM) design philosophy, allows the software to view these two dies as a single, unified processor. Memory is shared across a vast pool of processor cache and system memory in a single package. This approach is software agnostic and allows hardware to function efficiently with loads of bandwidth. Apple notes that no additional developer optimization is required for the new processor, and the already-existing stack of applications for M1 Max works out-of-the-box. Talking about numbers, the M1 Ultra chip has a potential main memory bandwidth of 800 GB/s, with up to 128 GB of unified system memory. We are yet to see how this design behaves as the first Mac Studio units start shipping, so we have to wait for more tests to check these claims out.

AMD Ryzen 7 5800X3D Priced at $450, Mid-April Launch Pricing of Other New Chips Surface

AMD Ryzen 7 5800X3D, the company's ambitious new 8-core/16-thread Socket AM4 processor that claims to match the Core i9-12900K "Alder Lake" in gaming performance, will launch at an MSRP of USD $449, according to prices of several upcoming AMD Ryzen processors leaked to the web. The 5800X3D is clocked lower than the 5800X, with 3.40 GHz base and 4.50 GHz boost frequencies, but the large 96 MB L3 cache from the 3D Vertical Cache memory, overcomes this.

The Ryzen 7 5700X is an interesting new 8-core/16-thread part. It's based on the "Vermeer" MCM just like the 5800X, and unlike the 5700G that's based on the "Cezanne" monolithic silicon. The 5700X is clocked at 3.40 GHz base, with 4.60 GHz boost, compared to the 3.80 GHz base and 4.70 GHz boost frequency of the 5800X. The Ryzen 7 5700X is launching at $299 MSRP, which implies that the company is cutting the MSRP of the Ryzen 5 5600X that originally occupied this price-point.

Update Mar 9th: Correction: the Ryzen 5 5500 is a 6-core/12-thread part.

Intel Makes Jilted Reference to Apple in its Internal "Arrow Lake" Slide

Intel is designing a "Halo" SKU of a future generation of mobile processors with a goal to match Apple's in-house silicon of the time. Slated for tape-out some time in 2023, with mass-production expected in 2024, the 15th Generation Core "Arrow Lake-P Halo" processor is being designed specifically to compete with Apple's "premium 14-inch laptop" (presumably the MacBook Pro) that the company could have around 2024, based on an in-house Apple silicon. This is to essentially tell its notebook partners that they will have an SoC capable of making their devices in the class truly competitive. Apple relies on a highly scaled out Arm-based SoC based on in-house IP blocks, with a software that's closely optimized for it. Intel's effort appears to chase down its performance and efficiency.

The Core "Arrow Lake" microarchitecture succeeds the 14th Gen "Meteor Lake." It is a multi-chip module (MCM) of three distinct dies built on different fabrication nodes, in line with the company's IDM 2.0 strategy. These nodes are Intel 4 (comparable to TSMC N7 or N6), Intel 20A (comparable to TSMC N5), and an "external" 3 nm-class node that's just the TSMC N3. The compute tile, or the die which houses the CPU cores, combines a hybrid CPU setup of 6 P-cores, and 8 E-cores. The performance cores are likely successors of the "Redwood Cove" P-cores powering the "Meteor Lake" compute tiles. Intel appears to be using one kind of E-cores across two generations (eg: Gracemont across Alder Lake and Raptor Lake). If this is any indication, Arrow Lake could continue to use "Crestmont" E-cores. Things get interesting with the Graphics tile.

Intel "Sapphire Rapids" Xeon 4-tile MCM Annotated

Intel Xeon Scalable "Sapphire Rapids" is an upcoming enterprise processor with a CPU core count of up to 60. This core-count is achieved using four dies inter-connected using EMIB. Locuza, who leads social media with logic die annotation, posted one for "Sapphire Rapids," based on a high-resolution die-shot revealed by Intel in its ISSCC 2022 presentation.

Each of the four dies in "Sapphire Rapids" is a fully-fledged multi-core processor in its own right, complete with CPU cores, integrated northbridge, memory and PCIe interfaces, and other platform I/O. What brings four of these together is the use of five EMIB bridges per die. This allows CPU cores of a die to transparantly access the I/O and memory controlled any of the other dies transparently. Logically, "Sapphire Rapids" isn't unlike AMD "Naples," which uses IFOP (Infinity Fabric over package) to inter-connect four 8-core "Zeppelin" dies, but the effort here appears to be to minimize the latency arising from an on-package interconnect, toward a high-bandwidth, low-latency one that uses silicon bridges with high-density microscopic wiring between them (akin to an interposer).

Intel "Meteor Lake" and "Arrow Lake" Use GPU Chiplets

Intel's upcoming "Meteor Lake" and "Arrow Lake" client mobile processors introduce an interesting twist to the chiplet concept. Earlier represented in vague-looking IP blocks, new artistic impressions of the chip put out by Intel shed light on a 3-die approach not unlike the Ryzen "Vermeer" MCM that has up to two CPU core dies (CCDs) talking to a cIOD (client IO die), which handles all the SoC connectivity; Intel's design has one major difference, and that's integrated graphics. Apparently, Intel's MCM uses a GPU die sitting next to the CPU core die, and the I/O (SoC) die. Intel likes to call its chiplets "tiles," and so we'll go with that.

The Graphics tile, CPU tile, and the SoC or I/O tile, are built on three different silicon fabrication process nodes based on the degree of need for the newer process node. The nodes used are Intel 4 (optically 7 nm EUV, but with characteristics of a 5 nm-class node); Intel 20A (characteristics of 2 nm), and external TSMC N3 (3 nm) node. At this point we don't know which tile gets what. From the looks of it, the CPU tile has a hybrid CPU core architecture made up of "Redwood Cove" P-cores, and "Crestmont" E-core clusters.

NVIDIA "Hopper" Might Have Huge 1000 mm² Die, Monolithic Design

Renowned hardware leaker kopike7kimi on Twitter revealed some purported details on NVIDIA's next-generation architecture for HPC (High Performance Computing), Hopper. According to the leaker, Hopper is still sporting a classic monolithic die design despite previous rumors, and it appears that NVIDIA's performance targets have led to the creation of a monstrous, ~1000 mm² die package for the GH100 chip, which usually maxes out the complexity and performance that can be achieved on a particular manufacturing process. This is despite the fact that Hopper is also rumored to be manufactured under TSMC's 5 nm technology, thus achieving higher transistor density and power efficiency compared to the 8 nm Samsung process that NVIDIA is currently contracting. At the very least, it means that the final die will be bigger than the already enormous 826 mm² of NVIDIA's GA100.

If this is indeed the case and NVIDIA isn't deploying a MCM (Multi-Chip Module) design on Hopper, which is designed for a market with increased profit margins, it likely means that less profitable consumer-oriented products from NVIDIA won't be featuring the technology either. MCM designs also make more sense in NVIDIA's HPC products, as they would enable higher theoretical performance when scaling - exactly what that market demands. Of course, NVIDIA could be looking to develop an MCM version of the GH100 still; but if that were to happen, the company could be looking to pair two of these chips together as another HPC product (rumored GH-102). ~2,000 mm² in a single GPU package, paired with increased density and architectural improvements might actually be what NVIDIA requires to achieve the 3x performance jump from the Ampere-based A100 the company is reportedly targeting.

AMD's Upcoming X670 Chipset Could be A Dual B650 Package, Very Difficult for ITX Board Integration

As we approach the next generation of AMD's Ryzen processors, accompanying chipsets will follow the launch of their main co-host device. Enabling different levels of features across the new processor generation, chipset versions are limiting the number of options a platform offers to the end-user. AMD is designing its motherboard chipsets in collaboration with a Taiwanese design firm ASMedia. They usually develop a few chipset types covering low-end, middle-end, and high-end motherboards segments. However, it seems like the high-end motherboard segment could be populated with the same silicon as the middle-end section of the chipset stack; note a few Chinese forum members on BiliBili.

As they note, the high-end AMD X670 chipset could be a multi-chip module (MCM) design incorporating two middle-end B650 chipsets. A combination of two B650 dies is allegedly forming an X670 chipset, and that is what AMD could force motherboard makers to use. By doing so, the Mini-ITX motherboard form factor could be challenging to design and manufacture, meaning that the package of the X670 chipset could be rather extensive. This rumor should, of course, be taken with a massive grain of salt as we don't know how this would function. However, it financially makes sense as AMD wouldn't need to design and request manufacturing for an additional chipset variant.

Intel Ponte Vecchio Early Silicon Puts Out 45 TFLOPs FP32 at 1.37 GHz, Already Beats NVIDIA A100 and AMD MI100

Intel in its 2021 Architecture Day presentation put out fine technical details of its Xe HPC Ponte Vecchio accelerator, including some [very] preliminary performance claims for its current A0-silicon-based prototype. The prototype operates at 1.37 GHz, but achieves out at least 45 TFLOPs of FP32 throughput. We calculated the clock speed based on simple math. Intel obtained the 45 TFLOPs number on a machine running a single Ponte Vecchio OAM (single MCM with two stacks), and a Xeon "Sapphire Rapids" CPU. 45 TFLOPs sees the processor already beat the advertised 19.5 TFLOPs of the NVIDIA "Ampere" A100 Tensor Core 40 GB processor. AMD isn't faring any better, with its production Instinct MI100 processor only offering 23.1 TFLOPs FP32.

NVIDIA Multi-Chip-Module Hopper GPU Rumored To Tape Out Soon

Hopper is an upcoming compute architecture from NVIDIA which will be the first from the company to feature a Multi-Chip-Module (MCM) design similar to Intel's Xe-HPC and AMD's upcoming CDNA2. The Hopper architecture has been teased for over 2 years but it would appear that it is nearing completion with a recent leak suggesting the product will tape out soon. This compute GPU will likely be manufactured on TSMC's 5 nm node and could feature two dies each with 288 Streaming Microprocessors which could theoretically provide a three-fold performance improvement over the Ampere-based NVIDIA A100. The first product to feature the GPU is expected to be the NVIDIA H100 data center accelerator which will serve as a successor to the A100 and could potentially launch in mid-2022.

AMD CDNA2 "Aldebaran" MI200 HPC Accelerator with 256 CU (16,384 cores) Imagined

AMD Instinct MI200 will be an important product for the company in the HPC and AI supercomputing market. It debuts the CDNA2 compute architecture, and is based on a multi-chip module (MCM) codenamed "Aldebaran." PC enthusiast Locuza, who conjures highly detailed architecture based on public information, imagined what "Aldebaran" could look like. The MCM contains two logic dies, and eight HBM2E stacks. Each of the two dies has a 4096-bit HBM2E interface, which talks to 64 GB of memory (128 GB per package). A silicon interposer provides microscopic wiring among the ten dies.

Each of the two logic dies, or chiplets, has sixteen shader engines that have 16 compute units (CU), each. The CDNA2 compute unit is capable of full-rate FP64, packed FP32 math, and Matrix Engines V2 (fixed function hardware for matrix multiplication, accelerating DNN building, training, and AI inference). With 128 CUs per chiplet, assuming the CDNA2 CU has 64 stream processors, one arrives at 8,192 SP. Two such dies add up to a whopping 16,384, more than three times that of the "Navi 21" RDNA2 silicon. Each die further features its independent PCIe interface, and XGMI (AMD's rival to CXL), an interconnect designed for high-density HPC scenarios. A rudimentary VCN (Video CoreNext) component is also present. It's important to note here, that the CDNA2 CU, as well as the "Aldebaran" MCM itself, doesn't have a dual-use as a GPU, since it lacks much of the hardware needed for graphics processing. The MI200 is expected to launch later this year.

Windows 11 to Enable Dynamic Refresh Rate on the Desktop - A Hint of Support for Multi Chip Module GPUs?

Microsoft seemingly has one more trick up its sleeve to increase attractiveness of Windows 11. Via a Microsoft blog post, the company revealed that Windows 11 will introduce support for Dynamic Refresh Rate on the Desktop, the 2-D realm of work e-mails, personal accounting, and social media. This means that Windows will be able to dynamically change your screen's refresh rate to save power consumption - scaling it to the scenario at hand.

For example: if you are reading a TechPowerUp article, Windows will dynamically reduce the refresh rate down to 60 Hz while you do so to conserve power. However, should any user interaction occur, such as a mouse movement or other input (like moving the browser window down and revealing a TechPowerUp wallpaper), Windows will automatically restore the refresh rate to its user-defined value.

Intel Xeon "Sapphire Rapids" Processor Die Shot Leaks

Thanks to the information coming from Yuuki_Ans, a person which has been leaking information about Intel's upcoming 4th generation Xeon Scalable processors codenamed Sapphire Rapids, we have the first die shots of the Sapphire Rapids processor and its delidded internals to look at. After performing the delidding process and sanding down the metal layers of the dies, the leaker has been able to take a few pictures of the dies present on the processor. As the Sapphire Rapids processor uses multi-chip modules (MCM) approach to building CPUs, the design is supposed to provide better yields for Intel and give the 10 nm dies better usability if defects happen.

In the die shots, we see that there are four dies side by side, with each die featuring 15 cores. That would amount to 60 cores present in the system, however, not all of the 60 cores are enabled. The top SKU is supposed to feature 56 cores, meaning that there would be at least four cores disabled across the configuration. This gives Intel flexibility to deliver plenty of processors, whatever the yields look like. The leaked CPU is an early engineering sample design with a low frequency of 1.3 GHz, which should improve in the final design. Notably, as Sapphire Rapids has SKUs that use in-package HBM2E memory, we don't know if the die configuration will look different from the one pictured down below.

AMD Confirms CDNA2 Instinct MI200 GPU Will Feature at Least Two Dies in MCM Design

Today we've got the first genuine piece of information that confirms AMD's MCM approach to CDNA2, the next-gen compute architecture meant for ML/HPC/Exascale computing. This comes courtesy of a Linux kernel update, where AMD engineers annotated the latest Linux kernel patch with some considerations specific for their upcoming Aldebaran, CDNA2-based compute cards. Namely, the engineers clarify the existence of a "Die0" and a "Die1", where power data fetching should be allocated to Die0 of the accelerator card - and that the power limit shouldn't be set on the secondary die.

This confirms that Aldebaran will be made of at least two CDNA2 compute dies, and as (almost) always in computing, one seems to be tasked with general administration of both compute dies. It is unclear as of yet whether the HBM2 memory controller will be allocated to the primary die, or if there will be an external I/O die (much like in Zen) that AMD can leverage for off-chip communication. AMD's approach to CDNA2 will eventually find its way (in an updated form) for AMD's consumer-geared next-generation graphics architecture with RDNA3.

Rumor: AMD Ryzen 7000 (Raphael) to Introduce Integrated GPU in Full Processor Lineup

The rumor mill keeps crushing away; in this case, regarding AMD's plans for their next-generation Zen designs. Various users have shared pieces of the same AMD roadmap, which apparently places AMD in an APU-focused landscape come their Ryzen 7000 series. we are currently on AMD's Ryzen 5000-series; Ryzen 6000 is supposed to materialize via a Zen 3+ design, with improved performance per watt obtained from improvements to its current Zen 3 family. However, Ryzen 7000-series is expected to debut on AMD's next-gen platform (let's call it AM5), which is also expected to introduce DDR5 support for AMD's mainstream computing platform. And now, the leaked, alleged roadmaps paint a Zen 4 + Navi 2 APU series in the works for AMD's Zen 4 debut with Raphael - roadmapped for manufacturing at the 5 nm process.

The inclusion of an iGPU chip with AMD's mainstream processors may signal a move by AMD to produce chiplets for all of its products, and then integrating them in the final product. You just have to think about it in the sense that AMD could "easily" pair one of the eight-core chiplets from the current Ryzen 5800X, for example, with an I/O die (which would likely still be fabricated with Global Foundries) an an additional Navi 2 GPU chiplet. It makes sense for AMD to start fabricating GPUs as chiplets as well - AMD's research on MCM (Multi-Chip Module) GPUs is pretty well-known at this point, and is a given for future development. It means that AMD needed only to develop one CPU chiplet and one GPU chiplet which they can then scale on-package by adding in more of the svelte pieces of silicon - something that Intel still doesn't do, and which results in the company's monolithic dies.

AMD "Genoa" Expected to Cram Up to 96 Cores, MCM Imagined

AMD's next-generation EPYC enterprise processor that succeeds the upcoming 3rd Gen EYPIC "Milan," codenamed "Genoa," is expected to be the first major platform update for AMD's enterprise platforms since the 2017 debut of the "Zen" based "Naples." Implementing the latest I/O interfaces, such as DDR5 memory and PCI-Express gen 5.0, the chip will also increase CPU core counts by 50% over "Milan," according to ExecutableFix on Twitter, a reliable source with rumors from the semiconductor industry. To enable the goals of new I/O and increased core counts, AMD will transition to a new CPU socket type, the SP5. This is a 6,096-pin land grid array (LGA), and the "Genoa" MCM package on SP5 is imagined to be visibly larger than SP3-generation packages.

With the added fiberglass substrate real-estate, AMD is expected to add more CPU chiplets to the package, and ExecutableFix expects the chiplet count to be increased to 12. AMD is expected to debut the "Zen 4" microarchitecture in the enterprise space with "Genoa," with the CPU chiplets expected to be built on the 5 nm EUV silicon fabrication node. Assuming the chiplets still only pack 8 cores a piece, "Genoa" could cram up to 96 cores per socket, or up to 192 logical processors, with SMT enabled.

AMD Instinct MI200 to Launch This Year with MCM Design

AMD is slowly preparing the next-generation of its compute-oriented flagship graphics card design called Instinct MI200 GPU. It is the card of choice for the exascale Frontier supercomputer, which is expected to make a debut later this year at the Oak Ridge Leadership Computing Facility. With the supercomputer planned for the end of this year, AMD Instinct MI200 is also going to get launched eight a bit before or alongside it. The Frontier exascale supercomputer is supposed to bring together AMD's next-generation Trento EPYC CPUs with Instinct MI200 GPU compute accelerators. However, it seems like AMD will utilize some new technologies for the making of this supercomputer. While we do not know what Trento EPYC CPUs will look like, it seems like Instinct MI200 GPU is going to feature a multi-chip-module (MCM) design with the new CDNA 2 GPU architecture. With this being the only information about the GPU, we have to wait a bit to find out more details.
AMD CDNA Die

NVIDIA to Introduce an Architecture Named After Ada Lovelace, Hopper Delayed?

NVIDIA has launched its GeForce RTX 3000 series of graphics cards based on the Ampere architecture three months ago. However, we are already getting information about the next-generation that the company plans to introduce. In the past, the rumors made us believe that the architecture coming after Ampere is allegedly being called Hopper. Hopper architecture is supposed to bring multi-chip packaging technology and be introduced after Ampere. However, thanks to @kopite7kimi on Twitter, a reliable source of information, we have data that NVIDIA is reportedly working on a monolithic GPU architecture that the company internally refers to as "ADxxx" for its codenames.

The new monolithically-designed Lovelace architecture is going make a debut on the 5 nm semiconductor manufacturing process, a whole year earlier than Hopper. It is unknown which foundry will manufacture the GPUs, however, both of NVIDIA's partners, TSMC and Samsung, are capable of manufacturing it. The Hopper is expected to arrive sometime in 2023-2024 and utilize the MCM technology, while the Lovelace architecture will appear in 2021-2022. We are not sure if the Hopper architecture will be exclusive to data centers or extend to the gaming segment as well. The Ada Lovelace architecture is supposedly going to be a gaming GPU family. Ada Lovelace, a British mathematician, has appeared on NVIDIA's 2018 GTC t-shirt known as "Company of Heroes", so NVIDIA may have already been using the ADxxx codenames internally for a long time now.

Alleged Intel Sapphire Rapids Xeon Processor Image Leaks, Dual-Die Madness Showcased

Today, thanks to the ServeTheHome forum member "111alan", we have the first pictures of the alleged Intel Sapphire Rapids Xeon processor. Pictured is what appears to be a dual-die design similar to Cascade Lake-SP design with 56 cores and 112 threads that uses two dies. The Sapphire Rapids is a 10 nm SuperFin design that allegedly comes even in the dual-die configuration. To host this processor, the motherboard needs an LGA4677 socket with 4677 pins present. The new LGA socket, along with the new 10 nm Sapphire Rapids Xeon processors are set for delivery in 2021 when Intel is expected to launch its new processors and their respective platforms.

The processor pictured is clearly a dual-die design, meaning that Intel used some of its Multi-Chip Package (MCM) technology that uses EMIB to interconnect the silicon using an active interposer. As a reminder, the new 10 nm Sapphire Rapids platform is supposed to bring many new features like a DDR5 memory controller paired with Intel's Data Streaming Accelerator (DSA); a brand new PCIe 5.0 standard protocol with a 32 GT/s data transfer rate, and a CXL 1.1 support for next-generation accelerators. The exact configuration of this processor is unknown, however, it is an engineering sample with a clock frequency of a modest 2.0 GHz.

AMD "Vermeer" Zen 3 Processors Branded Under Ryzen 5000 Series?

AMD is allegedly preparing to market its next-generation Socket AM4 desktop processors based on the "Vermeer" MCM, under the Ryzen 5000 Series. The "Vermeer" MCM implements the company's "Zen 3" microarchitecture in the client segment. It features up to two 7 nm-class CPU complex dies with up to 8 cores, each, and a refreshed cIOD (client IO die). AMD has allegedly improved the cIOD with a new memory controller and several new toggles that improve memory bandwidth. The cIOD combines a PCI-Express Gen 4 root complex with a dual-channel DDR4 memory controller. With "Zen 3," AMD is also introducing an improved boosting algorithm, and an improved SMT feature.

Coming back to AMD's rumored nomenclature, and we could see the company bumping up its processor model numbers to the 5000 series for equivalent core-counts. For example, the Ryzen 9 5900X is a 12-core/24-thread part, much like the 3900X; whereas the Ryzen 7 5800X is an 8-core/16-thread part. This flies in the face of rumors that AMD could take advantage of the 8-core CCX design of the "Zen 3" microarchitecture by carving out 10-core parts using two CCDs with 5 cores enabled, each. The reason AMD is skipping the 4000 series numbering with "Vermeer" probably has something to do with "Renoir" taking up many of the 4000-series model numbers. "Renoir" is based on "Zen 2," and recently made its desktop debut, albeit as an OEM-exclusive. The company is planning to introduce certain 4000G series models to the DIY retail segment. AMD is expected to announce its first "Zen 3" client-segment processors on October 8, 2020.

AMD "Renoir" Die Annotation Raises Hopes of Desktop Chips Featuring x16 PEG

VLSI engineer Fritzchens Fritz, famous for high-detail EM photography of silicon dies and annotations of them, recently published his work on AMD's 7 nm "Renoir" APU silicon. His die-shots were annotated by Nemez aka GPUsAreMagic. The floor-plan of the silicon shows that the CPU component finally dwarfs the iGPU component, thanks to double the CPU cores over the previous-gen "Picasso" silicon, spread over two CCXs (compute complexes). The CCX on "Renoir" is visibly smaller than the one on the "Zen 2" CCDs found in "Matisse" and "Rome" MCMs, as the L3 cache is smaller, at 4 MB compared to 16 MB. Being MCMs with disintegrated memory controllers, it makes more sense for CCDs to have more last-level cache per CCX.

We also see that the iGPU features no more than 8 "Vega" NGCUs, so there's no scope for "Renoir" based desktop APUs to feature >512 stream processors. AMD attempted to compensate for the NGCU deficit by dialing up engine clocks of the iGPU by over 40% compared to those on "Picasso." What caught our eye in the annotation is the PCI-Express physical layer. Apparently the die indeed has 20 PCI-Express lanes besides an additional 4 lanes that can be configured as two SATA 6 Gbps ports thanks to SerDes flexibility.

Vicor 1200A Hydra ChiP-set Enables Higher Performance AI Accelerator Cards

Vicor Corporation today announced a ChiP-set for high performance GPU, CPU, and ASIC ("XPU") processors powered directly from 48 V. A driver, MCD4609, and a pair of MCM4609 current multiplier modules supply up to 650 A continuous and 1200 A peak. Owing to their small footprint and low profile (45.7 x 8.6 x 3.2 mm), current multipliers are placed close to the processor enabling reduced power distribution network (PDN) losses and higher power system efficiency. Powering GPU and OCP Accelerator Module (OAM) Artificial Intelligent (AI) cards, the 4609 ChiP-set is in mass production and available to new customers on the Vicor Hydra II evaluation board.

The 4609 ChiP-set adds to the Vicor Power-on-Package portfolio of Lateral Power Delivery (LPD) solutions. To raise the bar of current capability above the limits of LPD, Vicor's pioneering Vertical Power Delivery (VPD) will soon enable much higher current density. The VPD system delivers current from power converters vertically stacked under a processor through a capacitor network geared to a processor-specific pin-map. A GCM ("Gearbox Current Multiplier") is a specialized VPD embodiment incorporating a gearbox capacitor network as a layer in the vertical stack. By supplying current directly under the processor and eliminating PDN losses, GCMs will soon facilitate current densities reaching up to 2 A per mm².

AMD Readies "Zen 2" Based Ryzen 3 Quad-core AM4 Processors

AMD is readying a new line of Ryzen 3 socket AM4 desktop processors to bolster its competitiveness against the upcoming 10th generation Core i3 processor family, according to OPN details unearthed by @momomo_us. The new line of processors are expected to be based on the "Matisse" MCM, configured with one "Zen 2" chiplet that has a quad-core CPU configuration. Within the chiplet, AMD appears to be achieving 4 cores by disabling one of the two CCXs completely, instead of taking the 2+2 core CCX configuration route. A single CCX with its 16 MB L3 cache, and 2 MB of L2 cache (4x 512 KB) add up to the processor's 18 MB "total cache."

Among the two SKUs existing are the Ryzen 3 3100 (OPN: 100-000000284) and the Ryzen 3 3300X (OPN: 100-000000159). Both are 4-core/8-thread parts with 18 MB total cache, and 65 W TDP. The 3100 is clocked up to 3.90 GHz, and the 3300X up to 4.30 GHz. It remains to be seen if AMD enables features like PCI-Express gen 4.0, and whether the 3100 has an unlocked multiplier. AMD's move to introduce Ryzen 3 "Matisse" parts appears to be necessitated by Intel's 10th gen Core i3. Intel is configuring its next value-segment chips to be 4-core/8-thread at price-points under $160. AMD has older generation Ryzen 5 and Ryzen 3 series parts at these prices, but is lacking on any current-gen product. One area where the 10th gen Core i3 one-ups Ryzen 3 "Matisse" is integrated graphics. Then again, Intel is likely to have "F" SKUs of Core i3 parts with disabled iGPUs, meant for gaming PCs. That's what AMD appears to be going after, to establish the next low-cost gaming PC king.

Bitspower Unveils Summit ELX CPU Water Block for AMD Ryzen Threadripper 3000

Bitspower unveiled the Summit ELX line of CPU water blocks optimized for 3rd generation AMD Ryzen Threadripper processors. The block's coolant channel is designed keeping in mind the layout of the "Castle Peak" MCM, such that coolant flows over even the CCDs farthest away from the center, which has the I/O controller die. This design should particularly benefit users of the Threadripper 3990X, which has eight CCDs. The block supports both sTRX4 and older TR4 sockets.

The primary material is nickel-plated copper, with a mirror finish at the base. There are three variants based on the type of top. The first one called "DRGB," (BP-CPUELXTRX40-DRGB), features a clear acrylic top with embedded addressable-RGB LEDs that plug into a standard 3-pin ARGB header. The second variant is called "Metal" (BP-CPUELXTRX40-MT), and features a metal alloy top with a chrome finish. The third variant, called "POM," (BP-CPUELXTRX40-POM), features a matte-black POM acetal top. The Summit ELX supports standard G 1/4" fittings, and measures 115 mm x 75 mm x 18 mm (LxWxH). The DRGB variant is priced at NTD 2,800, the Metal variant NTD 3,255, and the POM variant NTD 2,635.
Return to Keyword Browsing
May 18th, 2024 07:56 EDT change timezone

New Forum Posts

Popular Reviews

Controversial News Posts