News Posts matching #Semiconductor

Return to Keyword Browsing

TSMC Partners With Google and AMD to Push 3D Silicon

Silicon manufacturing is starting to get harder and harder every day, with new challenges appearing daily. It requires massive investment and massive knowledge to keep a silicon manufacturing company afloat. No company can survive that alone, so some collaborations are emerging. Today, thanks to the sources of Nikkei Asia, we have information that Taiwanese Semiconductor Manufacturing Company (TSMC) is collaborating with Google to push the production of 3D chip manufacturing process, that is said to overcome some of the silicon manufacturing difficulties. The sources also say that AMD is involved in the process as well, making Google and AMD the first customers of the advanced 3D chip design. The two companies are preparing designs for the new way of creating silicon and will help TSMC test and certify the process.

TSMC will deploy the 3D silicon manufacturing technology at its chip packaging plant in Miaoli, which is supposed to do mass production in 2022. With Google and AMD being the first customers of new 3D technology, it is exciting to see what new products will look like and how they will perform. The 3D approach is said to bring huge computing power increase, however, it is a waiting game now to see how it will look like.

Intel to Keep Its Number One Semiconductor Supplier Ranking in 2020: IC Insights

IC Insights' November Update to the 2020 McClean Report, released later this month, includes a discussion of the forecasted top-25 semiconductor suppliers in 2020. This research bulletin covers the expected top-15 2020 semiconductor suppliers (Figure 1).

The November Update also includes a detailed five-year forecast through 2024 of the IC market by product type (including dollar volume, unit shipments, and average selling price) and a forecast of the major semiconductor industry capital spenders for 2020. A five-year outlook for total semiconductor industry capital spending is also provided.

Wafer Prices Rising by Up to 40% in 2021: Report

Semiconductor foundries across the board are preparing to raise price quotes of their 8-inch wafers from 2021. A DigiTimes report sheds light on various foundry companies, including UMC (United Microelectronics), Global Foundries, and Vanguard International Semiconductor (VIS) have raised their 8-inch foundry quotes by 10-15% in Q4-2020, with the quotes set to rise by another 20-40% in 2021. Foundries don't tend to use flat pricing, and instead rely on quotes specific to the size and design requirements of an order (by a fabless chip designer).

The foundry industry operates broadly on silicon fabrication nodes and wafer sizes. This article by Telescope Magazine provides insights into the typical use-cases for each wafer size. Although pertaining strictly to pricing of 8-inch (200 mm) wafers, an impending price-rise across the semiconductor industry can be extrapolated on the basis on significant labor cost increases. TSMC is planning to implement a 20% pay hike for its personnel in 2021.

Another Semiconductor Player Bites the Dust: Chinese HSMC Shutters Operations

The semiconductor manufacturing industry is a cutthroat competition mostly played between established forces. One need only look to AMD's decision to spin-off its manufacturing arm to create Global Foundries to see how even a grand company can hit manufacturing issues (though not only manufacturing issues hit AMD at that time, obviously) can threaten to shutter operations. Intel's recent issues with 10 nm and 7 nm fabrication also come to mind. as such, it comes at no great surprise that Chinese company Wuhan Hongxin Semiconductor Manufacturing Company (HSMC) has reportedly run out of cash. What's a little more surprising is how this company was actually backed by the Chinese government, and yet it still failed - proof of the semiconductor industry's technical and investment liquidity requirements.

HSMC back in 2017 announced plans to bring online a manufacturing plant in the central Chinese province of Hubei. The aim was to manufacture 14 nm and 7 nm chips as early as 2019/2020, funded by a $20 billion loan and numerous funding rounds. HSMC's ex-CEO Chiang Shang-yi (who previously served as former head of R&D at TSMC) said to EETimes that "Investors ran short of cash." And that was it for the company's aspirations. The company has now been absorbed by the municipal government in the central Chinese province of Hubei, and what will come of that (and the company's future) remain uncertain.

Samsung Could Become Apple's Newest Chip Supplier

Apple has recently announced its transition to Apple Silicon, meaning that every processor inside its products will be custom designed by the company. However, that seems to be becoming a bit of a problem. The sole supplier of chips for Apple has been Taiwan Semiconductor Manufacturing Company (TSMC), which Apple collaborated with for the past few years. The sheer capacity of TSMC is enough to satisfy the demand from several companies and thus it allows some of them to book its capacity. With Apple demanding more and more capacity than ever before, it is becoming quite hard to keep up with it. That is why Apple is, according to some analysts for Business Korea, looking for a foundry beyond TSMC's to manufacture its chips.

According to the source, Apple is looking at the direction of Samsung Electronics and its silicon manufacturing facilities. Samsung has recently started the production of its 5 nm silicon manufacturing node. We have reported that the first SoCs are set to arrive soon. However, it may be possible that Apple's M1 lineup of SoCs will be a part of that first wave. Apple is reportedly going to tap both TSMC and Samsung to qualify enough supply for the huge demand of the products based on the latest 5 nm technology.

Huawei to Enter Silicon Manufacturing Business without US Technologies

Semiconductor manufacturing has been the latest victim of the recent trade war between China and the United States. With the US imposing sanctions on Chinese manufacturers, they have not been able to use any US technology without the approval of the US government. That has caused many companies to lose customers and switch their preferred foundry. The US government has also decided to sanction a Chinese company Huawei from accessing any US-technology-based manufacturing facilities, thus has prevented the Chinese company from manufacturing its chips in the facilities of TSMC. Left without almost any way to keep up with the latest semiconductor technology, Huawei is reportedly working on its own manufacturing facilities.

According to the Financial Times, Huawei is about to enter domestic silicon production with its partner company Shanghai IC R&D. And a big note here is that the manufacturing facility will not use any US technology. The production is allegedly going to start as soon as the end of this year, and the first process that will come out the door will be a rather outdated 45 nm node. The company is expecting to move on to a more advanced 28 nm node by the end of next year. While the capacities are unknown, we can assume that it will be enough for the company's purposes. With this move, Huawei will be 100% independent from any US influence and will own the complete vector of software and hardware, that is a custom made design by the company.
Huawei R&D Center

Dialog Semiconductor Licenses its Non-Volatile ReRAM Technology to GLOBALFOUNDRIES for 22FDX Platform

DIALOG SEMICONDUCTOR, a leading provider of battery and power management, Wi-Fi and Bluetooth low energy (BLE) and Industrial edge computing solutions and GLOBALFOUNDRIES (GF ), the world's leading specialty foundry, today announced that they have entered into an agreement in which Dialog licenses its Conductive Bridging RAM (CBRAM) technology to GLOBALFOUNDRIES. The resistive ram (ReRAM)-based technology was pioneered by Adesto Technologies which was recently acquired by Dialog Semiconductor in 2020. GLOBALFOUNDRIES will first offer Dialog's CBRAM as an embedded, non-volatile memory (NVM) option on its 22FDX platform, with the plan to extend to other platforms.

Dialog's proprietary and production proven CBRAM technology is a low power NVM solution designed to enable a range of applications from IoT and 5G connectivity to artificial intelligence (AI). Low power consumption, high read/write speeds, reduced manufacturing costs and tolerance for harsh environments make CBRAM particularly suitable for consumer, medical, and select industrial and automotive applications. Furthermore, CBRAM technology enables cost-effective embedded NVM for advanced technology nodes required for products in these markets.

NXP Advances 5G with New Gallium Nitride Fab in Arizona

NXP Semiconductors N.V. today announced the grand opening of its 150 mm (6-inch) RF Gallium Nitride (GaN) fab in Chandler, Arizona, the most advanced fab dedicated to 5G RF power amplifiers in the United States. The new internal factory combines NXP's expertise as the industry leader in RF power and its high-volume manufacturing know-how, resulting in streamlined innovation that supports the expansion of 5G base stations and advanced communication infrastructure in the industrial, aerospace and defense markets.

US Government Could Blacklist Chinese Chipmaker SMIC

The Trump administration has reportedly been considering adding to Chinese chipmaker SMIC (Semiconductor Manufacturing International Corporation) to the trade blacklist of Chinese companies, restricting the company of doing any business with the United States and/or with any of its affiliates. The original report comes from Reuters and it states that the move came from Pentagon after considering whatever SMIC should be placed on a blacklist. It is so far unclear if other US agencies support the decision, however, it should be public in the near future. The company has received the news on Saturday and it was "in complete shock" about the decision. Shortly after the news broke, SMIC stock has fallen as much as 15% amid the possible blacklist. If SMIC would like to continue working with American suppliers, it would need to seek a difficult-to-obtain license from the government.

Update 28th September: The United States government hasofficially imposed sanctions on the Chinese chipmaker SMIC. The company is now under US sanctions and is placed on a trade blacklist.

GLOBALFOUNDRIES Announces New 22FDX+ Platform, Extending FDX Leadership with Specialty Solutions for IoT and 5G Mobility

GLOBALFOUNDRIES (GF ), the world's leading specialty foundry, announced today at its Global Technology Conference the next generation of its FDXTM platform, 22FDX+, to meet the ever-growing need for higher performance and ultra-low power requirements of connected devices. GF's industry-leading 22FDX (22 nm FD-SOI) platform has realized $4.5 billion in design wins, with more than 350 million chips shipped to customers around the world.

GF's new 22FDX+ builds on the company's 22FDX platform, offering a broader set of features that provide high performance, ultra-low power, and specialty features and capabilities for the newest generation of designs. The differentiated offering will further empower customers to create chips that are specifically optimized for Internet of Things (IoT), 5G, automotive, and satellite communications applications.

China Focuses on 3rd Generation Semiconductors in Aim for Self-Sufficiency

The People Republic of China has always released 5-year plans that have a goal of achieving something. And in the latest, 14th 5-year plan China has an eye on the semiconductor industry. Specifically, China wants to develop independence and self-sufficiency when it comes to semiconductors. With tensions between the US and China raising, it is a smart move to have domestic technology to rely on. The new plan starts next year, 2021, and ends in the year 2025. In that period, China will devote financial resources and human workforce that will hopefully enable its goal. The primary aim for this 14th plan seems to be 3rd generation semiconductor technology. What is meant by that is a technology like gallium nitride (GaN) and silicon carbide (SiC). These technologies would be a nice addition to China's portfolio of semiconductors, so we should wait and see what comes out of it.

AMD CEO Dr. Lisa Su to Receive Semiconductor Industry's Top Honor

The Semiconductor Industry Association (SIA) today announced Dr. Lisa Su, president and CEO of AMD and an accomplished leader in advancing semiconductor technology, has been named the 2020 recipient of SIA's highest honor, the Robert N. Noyce Award. SIA presents the Noyce Award annually in recognition of a leader who has made outstanding contributions to the semiconductor industry in technology or public policy. Dr. Su will accept the award at the SIA Leadership Forum and Award Celebration, a virtual event that will take place on Thursday, Nov. 19, 2020.

"A tremendous leader in our industry, Lisa Su has successfully advanced leading-edge semiconductor and high-performance computing technologies throughout her career as an accomplished business executive and engineer," said John Neuffer, SIA president and CEO. "Lisa's outstanding achievements have significantly strengthened the semiconductor industry and America's global technology leadership, and she has inspired and opened doors for countless others in tech along the way. On behalf of the SIA board of directors, it is my pleasure to announce Lisa as the 2020 Robert N. Noyce Award recipient in recognition of her impressive accomplishments."

Samsung Begins Mass Production of 16Gb LPDDR5 DRAM at World's Largest Semiconductor Line

Samsung Electronics, the world leader in advanced memory technology, today announced that its second production line in Pyeongtaek, Korea, has commenced mass production of the industry's first 16-gigabit (Gb) LPDDR5 mobile DRAM, using extreme ultraviolet (EUV) technology. Built on Samsung's third-generation 10 nm-class (1z) process, the new 16Gb LPDDR5 boasts the highest mobile memory performance and largest capacity to enable more consumers to enjoy the full benefits of 5G and AI features in next-generation smartphones.

"The 1z-based 16Gb LPDDR5 elevates the industry to a new threshold, overcoming a major developmental hurdle in DRAM scaling at advanced nodes," said Jung-bae Lee, executive vice president of DRAM Product & Technology at Samsung Electronics. "We will continue to expand our premium DRAM lineup and exceed customer demands, as we lead in growing the overall memory market."

Chinese Fabs Attracted Over 100 TSMC Veteran Engineers Since 2019: Report

A Nikkei investigative report uncovered that two Chinese semiconductor fabrication firms, namely Quanxin Integrated Circuit Manufacturing (QXIC), and Hongxin Semiconductor Manufacturing Co (HSMC), have poached over 100 veteran semiconductor engineers from TSMC since last year. Both firms are recipients of government funding under China's ambitious plan of complete electronics hardware industry independence by 2025. Both firms were floated as recently as 2017, and began hiring specialist engineers and executives with connections across the semiconductor industry, from TSMC. The two began development of a 14 nm-class FinFET node that would support manufacturing of a wide variety of electronics components, including SoCs, ASICs, transceivers, and storage products.

Nikkei estimates that in a span of a year, Taiwan lost more than 3,000 semiconductor engineers to various start-ups in the mainland, including large semiconductor fabs. Sources in TSMC tell the Japanese publication that the company is "very concerned" about the flight of talent toward China, although it didn't believe that there is any immediate danger to the company's output or technological edge. The source advocated a national-level strategy by various Asian governments to retain talent, not through coercion, but by offering better incentives and pay than the Chinese firms flush with public investment.

US Aims to Bring Chip Manufacturing Industry Back to Its Soil

The US is one of the leading countries when it comes to chip design technologies and know-how; however, when it comes to actual manufacturing those designs, it's fallen from grace in recent years. Once the leader in both design and manufacturing, nowadays the US can only claim some 12% of the world's semiconductor production. The rest of it is mainly produced in Asia, where TSMC stands as the industry juggernaut, with other companies stretching across Taiwan, Japan, and most recently (and surging) China - the country has more than doubled its 300 mm manufacturing sites since 2017. This places some strain on the US' dependence from foreign shipments; and the country is looking to bridge that gap in its perceived national interests by investing heavily in silicon manufacturing to be brought back to the country. Recent slippages from Intel when it comes to keeping its manufacturing lead have apparently also instilled preoccupation amongst US policy makers.

Samsung's 5 nm EUV Node Struggles with Yields

Semiconductor manufacturing is a difficult process. Often when a new node is being developed, there are new materials introduced that may cause some yield issues. Or perhaps with 7 nm and below nodes, they are quite difficult to manufacture due to their size, as the transistor can get damaged by the smallest impurity in silicon. So manufacturers have to be extra careful and must spend more time on the development of new nodes. According to industry sources over at DigiTimes, we have information that Samsung is struggling with its 5 nm EUV node.

This unfortunate news comes after the industry sources of DigiTimes reported that Qualcomm's next-generation 5G chipsets could be affected if Samsung doesn't improve its yields. While there are no specific pieces of information on what is the main cause of bad yields, there could be a plethora of reasons. From anything related to manufacturing equipment to silicon impurities. We don't know yet. We hope that Samsung can sort out these issues in time, so Qualcomm wouldn't need to reserve its orders at rival foundries and port the design to a new process.

TSMC Becomes the Biggest Semiconductor Company in the World

Taiwan Semiconductor Manufacturing Company, called TSMC shorty, has just become the world's biggest semiconductor company. The news broke after TSMC's stock reached a peak heights of $66.40 price per share, and market capitalization of 313 billion US dollars. That means that the Taiwanese company officially passed Intel, NVIDIA, and Samsung in terms of market capitalization, which is no small feat. And the news isn't that surprising. TSMC has been rather busy with orders from customers, just waiting for new spots so they can grab a piece of its production pipeline.

TrendForce, a market intelligence provider, estimates that TSMC has an amazing 51.9% of global semiconductor foundry share alone. That is no small feat but TSMC worked hard over the years to make it happen. With constant investments into R&D, TSMC has managed to make itself not only competitive with other foundries, but rather an industry leader. With 5 nm already going in high-volume manufacturing (HVM) in Q4 of this year, the company is demonstrating that it is the market leader with the latest node developments. Smaller nodes like 3 nm are already in development and TSMC doesn't plan to stop.
TSMC HQ

SMIC Makes a Debut on China STAR Market

Chinese silicon manufacturer Semiconductor Manufacturing International (SMIC) has officially made a debut on the Chinese science and technology innovation board (STAR) as of today. After submitting a proposal 16 days ago, SMIC already managed to start trading its shares on the STAR board of China's Shanghai Stock Exchange (SSE). Why this is important you might wonder? Well now SMIC can collect more funds and invest that into node development, so the Chinese semiconductor industry is about to boom. Being the biggest semiconductor manufacturer in China, SMIC takes the lead and every development from the company is big for the Chinese semiconductor industry.

SMIC is currently trading on the Stock Exchange of Hong Kong (HKEX) where it used to trade exclusively. With SSE now included, it is easier for the company to trade. SMIC also submitted a proposal last year in May to start trading on the New York Stock Exchange (NYSE) so it can get the attention of Western investors. If the company manages to successfully raise all the funds for node development, then the Chinese semiconductor industry is about to flourish.

Analog Devices Acquires Maxim Integrated

Analog Devices, Inc. (Nasdaq: ADI) and Maxim Integrated Products, Inc. (Nasdaq: MXIM) today announced that they have entered into a definitive agreement under which ADI will acquire Maxim in an all stock transaction that values the combined enterprise at over $68 billion. The transaction, which was unanimously approved by the Boards of Directors of both companies, will strengthen ADI as an analog semiconductor leader with increased breadth and scale across multiple attractive end markets.

Under the terms of the agreement, Maxim stockholders will receive 0.630 of a share of ADI common stock for each share of Maxim common stock they hold at the closing of the transaction. Upon closing, current ADI stockholders will own approximately 69 percent of the combined company, while Maxim stockholders will own approximately 31 percent. The transaction is intended to qualify as a tax-free reorganization for U.S. federal income tax purposes.

Samsung Leads Semiconductor Paradigm Shift with New Material Discovery

Researchers at the Samsung Advanced Institute of Technology (SAIT) have unveiled the discovery of a new material, called amorphous boron nitride (a-BN), in collaboration with Ulsan National Institute of Science and Technology (UNIST) and the University of Cambridge. Published in the journal Nature, the study has the potential to accelerate the advent of the next generation of semiconductors.

Recently, SAIT has been working on the research and development of two-dimensional (2D) materials - crystalline materials with a single layer of atoms. Specifically, the institute has been working on the research and development of graphene, and has achieved groundbreaking research outcomes in this area such as the development of a new graphene transistor as well as a novel method of producing large-area, single-crystal wafer-scale graphene. In addition to researching and developing graphene, SAIT has been working to accelerate the material's commercialization.

Lattice Semiconductor Announces Certus-NX General Purpose FPGA

Lattice Semiconductor Corporation, the low power programmable leader, today launched the new Lattice Certus -NX family of FPGAs. The devices lead the general-purpose FPGA market in I/O density, delivering up to twice the I/O density per mm2 in comparison to similar competing FPGAs, and provide best-in-class power savings, small size, reliability, instant-on performance, and support fast PCI Express (PCIe) and Gigabit Ethernet interfaces to enable data co-processing, signal bridging, and system control. Certus-NX FPGAs target a range of applications, from data processing in automated industrial equipment to system management in communications infrastructure. The Certus-NX devices are the second family of FPGAs developed on the Lattice Nexus platform, the industry's first low power FPGA platform using 28 nm FD-SOI process technology. With the launch of Certus-NX, Lattice marks the release of the second device family developed under Lattice's new product development strategy in just six months.

"Certus-NX delivers unique and innovative capabilities that set it apart," said Linley Gwennap, Principal Analyst at The Linley Group. "Compared to competing FPGAs of similar gate counts, Lattice offers a much smaller package, greater I/O density, and lower power."

Intel Plans to Volume Manufacture Nanowire/Nanoribbon Transistors in Five Years

Semiconductor manufacturing is a hard business. There is a constant need for manufacturers to compete with each other and if they don't, they get left behind. Intel, as one of the biggest semiconductor makers in the world, is always trying to invent new technologies spending massive R&D funds on semiconductors. New technologies such as nanowire/nanoribbon transistors, which are supposed to enable transistor sizes unimaginable now, are on its way to make it in the hand of consumers. During the international VLSI conference, Intel's CTO Mike Mayberry held a presentation about how Intel plans to address the demand for more compute by showing off new technologies.

With a presentation titled "The Future of Compute", Mr. Mayberry made some exciting claims and predictions. So far, we have been used to FinFET transistors since the 22 nm node from Intel. However, as nodes get smaller the gate of the transistor is not enough to keep it from switching randomly. So to avoid that problem Intel, along with other semiconductor manufacturers like Samsung, created a solution called Gate-All-Around FET (GAAFET). This technology takes a transistor fin and wraps in around all sides (see picture below), so the gate has better switching control, preventing random switching and errors. As a fin, nanowire or nanosheet (wider option from nanowire) can be used and they can be stacked. These allow for additional control of tailoring whatever a node will be used for high performance or low power. Intel predicts that they will start high volume manufacturing of silicon based on this technology in five years. This is setting an important milestone for Intel as well as other industry players, as now everyone will rush to deliver it first. It is now a waiting game to see who will actually come out with it first.
Intel Nanowire/Nanoribbon Samsung GAAFET

Semiconductor Fabs to Log Record Spending of Nearly $68 Billion in 2021, SEMI Reports

2021 is poised to mark a banner year for global fab equipment spending with 24 percent growth to a record US$67.7 billion, 10 percent higher than the previously forecast US$65.7 billion, and all product segments promising solid growth rates, according to the second-quarter 2020 update of the SEMI World Fab Forecast report. Memory fabs will lead worldwide semiconductor segments with US$30 billion in equipment spending, while leading-edge logic and foundry is expected to rank second with US$29 billion in investments.

The 3D NAND memory subsegment will help power the spending spree with a 30 percent jump in investments this year before tacking on 17 percent growth in 2021. DRAM fab investments will surge 50 percent next year after declining 11 percent in 2020, and fab spending on logic and foundry, mainly leading edge, will trace a similar but more muted trajectory, rising 16 percent 2021 after an 11 percent drop this year.

Samsung Receives Zero Waste to Landfill Validations for All of its Semiconductor Manufacturing Sites

Samsung Electronics Co., Ltd., a world leader in advanced semiconductor technology, today announced that it has received UL's Zero Waste to Landfill validation of Gold level and above for all of its global semiconductor operation sites. This signifies that Samsung's semiconductor sites in South Korea, US and China meet the requirement of more than 95-percent waste diversion through methods that do not involve thermal processing. In particular, the Samsung DSR building in Hwaseong, Korea, home to most of its local semiconductor R&D staff, is validated for Zero Waste to Landfill at the Platinum level for reaching 100-percent waste diversion.

"The Zero Waste to Landfill Gold validation is testament to the care and effort by our employees around the world to protect the environment," said Chanhoon Park, executive vice president of global infrastructure technology at Samsung Electronics. "Eco-friendly operations are now a must for any business and we will continue to ensure sustainable growth that is mindful of the environment that we live and operate in."

Teledyne e2v Introduces First Radiation-Tolerant DDR4 Memory for Space Applications

Teledyne e2v has announced the DDR4T04G72M - the first radiation-tolerant DDR4 memory chip, featuring a total 4 GB capacity. Currently validated at 2133 MT/s, and targeting to offer 2400MT/s in the near future, this next-generation solution offers ultra-responsive low latency operation, while fitting into a highly compact form factor. Furthermore, high-reliability manufacturing and radiation-tolerant robustness makes it highly suitable for dealing with the rigors of space environments.

With 15 mm x 20 mm x 1.92 mm dimensions, this new space-grade device comprises an array of Micron based memory chips, integrated in a single package. It features a 72-bit bus, where 64 bits are dedicated to data and 8 bits to error correction code (ECC). Radiation tests have been performed on these memory chips and a single event effects (SEE) report is available from Teledyne e2v. In particular, the memory has been demonstrated to be single event latch-up (SEL) free up to 60+ MeV.cm²/mg.
Return to Keyword Browsing
Nov 21st, 2024 10:24 EST change timezone

New Forum Posts

Popular Reviews

Controversial News Posts