Sunday, February 26th 2023
Intel to Go Ahead with "Meteor Lake" 6P+16E Processor on the Desktop Platform?
Late last year, it was reported that Intel is skipping its upcoming "Meteor Lake" microarchitecture for the desktop platform, giving it a mobile-platform debut in late-2023, with "Arrow Lake" following on in 2024, which would address both platforms. In the interim, Intel was expected to release a "Raptor Lake Refresh" architecture for desktop in 2023. It turns out now, that both the "Raptor Lake Refresh" and "Meteor Lake" architectures are coming to desktop—we just don't know when.
Apparently, Intel will brazen it out against AMD with a maximum CPU core-count of just 6 performance cores and 16 efficiency cores possible for "Meteor Lake." It's just that both the P-cores and a E-cores get an IPC uplift with "Meteor Lake." The processor features up to six "Redwood Cove" P-cores with an IPC uplift over the current "Raptor Cove" cores; and introduce the new "Crestmont" E-cores. A lot will depend on the IPC uplift of the latter. Leaf_hobby, a reliable source with Intel leaks on social media, has some interesting details on the I/O capabilities of "Meteor Lake" on the desktop platform.Apparently, "Meteor Lake-S" (the desktop variant), comes with a PCI-Express host interface of 20 PCIe Gen 5 lanes, and 12 PCIe Gen 4 lanes from the processor. This works out to a PCI-Express 5.0 x16 PEG interface, one PCI-Express 5.0 x4 interface for the first CPU-attached NVMe SSD, one PCI-Express 4.0 x4 for a second CPU-attached NVMe SSD; and 8 PCI-Express 4.0 lanes toward the DMI chipset bus.
The companion Z890 chipset, the top desktop motherboard chipset option for "Meteor Lake-S," comes with an all-Gen 4 PCIe interface. It puts out 24 PCIe Gen 4 downstream lanes. With this platform, Intel could standardize Wi-Fi 7 (IEEE 802.11be), a new wireless networking standard with a theoretical maximum bandwidth of over 40 Gbps.
Lastly, there's the question of platform. "Meteor Lake-S" is unlikely to be supported on the current LGA1700 platform, and Intel is expected to debut the new Socket LGA1851 for "Meteor Lake-S" and its succeeding "Arrow Lake." The new socket could maintain cooler-compatibility with LGA1700, though.
Source:
leaf_hobby
Apparently, Intel will brazen it out against AMD with a maximum CPU core-count of just 6 performance cores and 16 efficiency cores possible for "Meteor Lake." It's just that both the P-cores and a E-cores get an IPC uplift with "Meteor Lake." The processor features up to six "Redwood Cove" P-cores with an IPC uplift over the current "Raptor Cove" cores; and introduce the new "Crestmont" E-cores. A lot will depend on the IPC uplift of the latter. Leaf_hobby, a reliable source with Intel leaks on social media, has some interesting details on the I/O capabilities of "Meteor Lake" on the desktop platform.Apparently, "Meteor Lake-S" (the desktop variant), comes with a PCI-Express host interface of 20 PCIe Gen 5 lanes, and 12 PCIe Gen 4 lanes from the processor. This works out to a PCI-Express 5.0 x16 PEG interface, one PCI-Express 5.0 x4 interface for the first CPU-attached NVMe SSD, one PCI-Express 4.0 x4 for a second CPU-attached NVMe SSD; and 8 PCI-Express 4.0 lanes toward the DMI chipset bus.
The companion Z890 chipset, the top desktop motherboard chipset option for "Meteor Lake-S," comes with an all-Gen 4 PCIe interface. It puts out 24 PCIe Gen 4 downstream lanes. With this platform, Intel could standardize Wi-Fi 7 (IEEE 802.11be), a new wireless networking standard with a theoretical maximum bandwidth of over 40 Gbps.
Lastly, there's the question of platform. "Meteor Lake-S" is unlikely to be supported on the current LGA1700 platform, and Intel is expected to debut the new Socket LGA1851 for "Meteor Lake-S" and its succeeding "Arrow Lake." The new socket could maintain cooler-compatibility with LGA1700, though.
128 Comments on Intel to Go Ahead with "Meteor Lake" 6P+16E Processor on the Desktop Platform?
As you can see from the chart above, even with only E-Cores enabled in a task they are most effective in E-Cores are actually less efficient than if you enabled just the P-Cores. The only purpose of E-Cores is so that Intel can cram more cores into it's processors.
E-Cores are massively slower than P-cores:
The only metric they look good in is performance per mm2.
It's easy to see why people do not want a 6P 16E core CPU. According to the article, it is the max they will have that gen:
"Apparently, Intel will brazen it out against AMD with a maximum CPU core-count of just 6 performance cores and 16 efficiency cores possible for "Meteor Lake.""
That's a problem, because this is a product that isn't even released yet and the top SKU is poised to loose some performance in games that already utilize more than 6 cores. By the time this processor releases, there will certainly be even more especially as more titles get RT. Then consider how well those 6 cores will cope with future titles as well for what should be a flagship CPU. Intel is going to need to bring an extremely hefty IPC uplift to offset the loss. It kind of also gives AMD a pass to not increase core counts again as well, given that they've been able to match Intel's higher core counts with higher performing cores.
Then you're hinting at some people being hypocritical if they buy a future product that we know nothing about.
Just wow.
I personally refuse to get amazed in either direction this long before launch. We've seen it before, but we know that we need actual benchmarks before getting amazed.
My point was disparate cores are the future - the current tech trends point to that, it’s already in everyone’s roadmaps to release that. HD cores aren’t going to get the same fps as full cores with hbm/3dvcache.
They’re not hypocritical- they just haven’t used the tech - but they will. That’s not an assumption.
What kind of limitation does the E-cores have that causes the efficiency to plummet when using multiple cores?
The 12900K's 8 E-cores perform
Cinebench ST: 1050, MT:7700 @ 55 W
The 13900K's 16 E-cores with +10% clock performe
Cinebench ST: 1200, MT:18000 @ 120 W
In other words, the 16 E-cores are comparable to the Ryzen 9 3900X in both ST, MT, and has almost same instruction set. If we follow your definition, the 3900X has 0 cores.
The next gen Crestmont is said to have a 10% IPC improvement or, according to MLID, a 25% or more IPC improvement. If MLID's claims are true (which I don't believe), then Meteor lake's 16 E-cores will be Cinebench ST: 1500, MT: 22000, comparable to 5900X. According to your claim, the 5900X would have 0 cores.
Only way this is amazing (and truly hypocritical from AMD users IMO) is if they cores are comparable, otherwise it's apples to oranges.
In a similar way, I could call Intel Arc A770 crap today, but if I buy a newer Intel GPU next year has nothing to do with it. Nothing amazing/weird/hypocritical going on.
On the other hand, the 2xE core occupies only about 65% of the area of the 1xP core, so more cores in the same area and lower clocks can achieve the same MT performance at lower power (this is the technique used in mobile GPUs). The table below shows the cases where E-cores can contribute to power efficiency.
imagine something like
14th gen i-core series
i3- 4P + 2E = 10T
or
4P + 4E = 12T
i5 - just as it is with 13th gen, 6P + 4E = 16T
or
go for 6P +6E = 18T
i7 - 8P + 8E (just like 13th gen)
i9 - 8P + 16E (just like 13th gen) or at least increase it to like 10P + 16E = 36T
could be a nice generation if you ask me
this ONLY really applies to benchmark workloads and ONLY when you are benching on ONLY the E-cores
also the E-core take up a lot less die space which means you can have many more of them
all that being said I personally think hybrid architectures are a fad and a stop gap solution
And then Intel proceeds to destroy its wattage lead by powering those P cores up to 11 and they're back at square one, but people can at least believe they bought something with a bigger number on it.
I think this all sums up to a very clear conclusion for CPU land. 'We're done'. Remarkably similar to what's been going with raster perf on GPUs, isn't it. You only get meaningful performance wins if the silicon is tailored to meet those specific needs; ie, V cache for gaming; RT for pointless epeen.
For example, in Cinebench, Geekbench, Blender Benchmark, and 7-zip benchmarks, the 1235U (10C12T) and 5600U (6C12T), strictly limited to 15W, shows almost the same MT score, while the 12500H (12C16T) and 5800H (8C16T) show almost the same MT.
P.S.: 12500H can score comparable to 5600X even when turned down to 45W.
Each cases are based on actual report of CPU Package Power:
12500H (12C16T) @ 45W 11124 (GIGABYTE G5 entertainment mode)
12500H (12C16T) @ 95W 14435 (HP OMEN 16 performance mode)
5700X (8C16T) @ 76W 13802 (TDP65W, PPT76W)
5800X (8C16T) @ 130W 15228 (TDP105W, PPT142W)
Intel made the right changes to E cores with Raptor Lake as a whole it was good step forward. If anything they just pushed P core frequency too damn far at peak. It's been pointed out that it's fairly easy to correct most of the efficiency problem w/o sacrificing overly heavily. To be fair the AM5 7800 vs AM5 7800X is quite a difference as well and shows AMD pushed the 7800X a lot further and could've had a lot better efficiency as well from the get go. Neither company were perfect on that end. I hear you on that people have a unhealthy obsession with the P cores thinking it's going to automatically give them more frame rates more than anything else. Most of the gains in that area are from IPC and additional frequency and Intel's already pushed frequency against the wall repeatedly. There isn't too much further than push it w/o a more serious node shrink and/or other newer fabrication techniques entirely away from silicone. There is one area I think Intel could do with P cores and that's a shared L2 cache between them same as the E cores does currently.
They could've gone as far as a 4 P cores with 20 E cores if they wanted and it still would've made sense. The E core clusters have more L2 cache that they share than a individual P core in-spite of similar die space area. Something Intel could possibly do with P cores Intel is have a shared HT by putting pairs of P cores in clusters. They could also reintroduce AVX-512 on P cores for clusters for every other P core or 1 per cluster. The P cores could likewise have a shared L2 cache. I'm fine with with leveraging more E cores up to a point. Below about 4P cores it starts getting more questionable if it's worth going lower though even 2P cores from Skylake generation are pretty robust at gaming.
I said "E-core are useless in my use cases"
That said.
My use case isn't running Cinebench 24/7
My gaming rig doesn't need E-cores, since everybody and their dog knows E-cores doesn't help in gaming, I rather have 1 or 2 extra P cores to handle so-called "Background tasks".
My productivity rig doesn't need E-cores too, since my productivity rig is a VM bare metal running 40+VMs doing software development, all I need is many and equal cores so I could distribute them across the VMs. The last thing I want are some cut down cores with incomplete instruction set and troubles me in virtualization.
Maybe you do Cinebench 24/7 and E-core meant a lot to you.
But I don't.
I could accept pure P-core or pure E-core CPUs, but not the Hybrids.
Hybrid CPUs in my use cases are just waste of sand.
Even if all cores are homogeneous, the actual execution speed is not homogeneous because of competing access to shared resources (typically two logical cores sharing a physical core, or memory). The situation is surprisingly serious with respect to memory, to the extent that it is necessary to devise ways to prevent multiple threads from accessing memory addresses in close proximity at the same time.
For this reason, in multi-threaded programming, the process is divided into far more pieces than the number of logical cores, and the smaller pieces are processed sequentially when a logical core becomes free (the pieces in the familiar Cinebench image). This is the kind of information that Google doesn't give you very often, but it's a know-how that anyone with experience knows.
If you think that all P-cores work equally well, you lack experience in dealing with many-cores. Besides, as you can see if you try it, under high load, the clocks of P-cores and E-cores are almost equal, resulting in each thread on P-core 1C2T and E-core 2C2T being almost the same speed. If you need commercially equal cores, buy an EPYC or Xeon.
I do need equal cores for virtualization
So I had TR PRO as bare metal If you think they cannot make all P-cores working equally well, what makes you think they can handle mixed Hybrid cores work well ?