Sunday, November 10th 2024
AMD "Zen 6" to Retain Socket AM5 for Desktops, 2026-27 Product Launches
The desktop version of AMD's next-generation "Zen 6" microarchitecture will retain Socket AM5, Kepler_L2, a reliable source with hardware leaks, revealed. What's more interesting is the rumor that the current "Zen 5" will remain AMD's mainstay for the entirety of 2025, and possibly even most of 2026, at least for the desktop platform. AMD will be banking heavily on the recently announced Ryzen 7 9800X3D, and its high core-count siblings, the Ryzen 9 9950X3D and possible 9900X3D, to see the company through for 2025 against Intel. The 9800X3D posted significantly higher gaming performance than Intel, and the 9950X3D is expected to be at least faster than the 7950X3D at gaming, which means its gaming performance, coupled with multithreaded application performance from its 16-core/32-thread count should be the face of AMD's desktop processor lineup for at least the next year.
It wouldn't be off-character for AMD to launch "Zen 6" on AM5, and not refresh the platform. The company had launched three microarchitectures (Zen thru Zen 3) on Socket AM4. With "Zen 6," AMD has the opportunity to not just increase IPC, but also core-counts per CCD, cache sizes, a new foundry node such as 3 nm, and probably even introduce features such as hybrid architecture and an NPU to the desktop platform, which means it could at least update the current 6 nm client I/O die (cIOD) while retaining AM5. A new cIOD could give AMD the much-needed opportunity to update the DDR5 memory controllers to support higher memory frequencies. The Kepler_L2 leak predicts a "late-2026 or early-2027" launch for desktop "Zen 6" processors. In the meantime, Intel is expected to ramp "Arrow Lake-S" on Socket LGA1851, and debut the "Panther Lake" microarchitecture on LGA1851 in 2025-26.
Source:
VideoCardz
It wouldn't be off-character for AMD to launch "Zen 6" on AM5, and not refresh the platform. The company had launched three microarchitectures (Zen thru Zen 3) on Socket AM4. With "Zen 6," AMD has the opportunity to not just increase IPC, but also core-counts per CCD, cache sizes, a new foundry node such as 3 nm, and probably even introduce features such as hybrid architecture and an NPU to the desktop platform, which means it could at least update the current 6 nm client I/O die (cIOD) while retaining AM5. A new cIOD could give AMD the much-needed opportunity to update the DDR5 memory controllers to support higher memory frequencies. The Kepler_L2 leak predicts a "late-2026 or early-2027" launch for desktop "Zen 6" processors. In the meantime, Intel is expected to ramp "Arrow Lake-S" on Socket LGA1851, and debut the "Panther Lake" microarchitecture on LGA1851 in 2025-26.
100 Comments on AMD "Zen 6" to Retain Socket AM5 for Desktops, 2026-27 Product Launches
Zen+: 399 days since last launch.
Zen2: 445
Zen3: 488
Zen4 691
Zen5 682
All the engineering time is spent on a single design, no need to re-do parts of the design just to add or substract cores from the original design.
If AMD do this, they will have to abandon the universal CCD/CCX that now fits all of their platforms. The exact same CCD/CCX that fits CPUs from <$300 up to $10,000+. From 6/8 cores up to 128.
Can you understand the convenience and cost reduction that this provides? Along with the avoidance of complexity of TSMC wafer allocation and distribution between platforms, if several different designs were to exist. AMD does not need this kind of a headache.
Your way of thinking is too narrow(?) and PC oriented without considering(?) that the big game is on EPYC. What we get as PC end users (even threadripper) is the low-end by-product of that game.
Feet on the ground and facing the facts
On the other hand they do need a faster (high frequency) UMC and IF/DF as 9000 has shown. Probably (most likely) this will drive overall CPU package power up, so that will require also a much better node for SoC and CCD/CCX to compensate.
Soon to come I believe
I bet these monolithic bigger designs have much lower fab yields. More expensive.
I expect the next gen AMD APUs with those huge graphics to be super expensive.
Yes, EPYC CPUs are where most of the money is, but AMD makes a lot of money selling desktop CPUs.
Placing the memory controller on the same die as the x86 cores would be a very quick, simple and easy way (during the design phase) to increase the IPC of the x86 cores, since they would have much faster access to the main RAM. And perhaps the cost of manufacturing the processor would be cheaper because, with the memory controller (IMC) on the same die as the x86 cores, it would not need to have such a large amount of L3 cache memory. AMD wouldn't need to increase the usual amount of L3 (32 MB) on its "non-3D cache" CPUs. And even on the 3D-cache CPUs, it could only put 32 MB more L3 instead of 64 MB, since CPUs with IMC on the same die as the x86 cores don't need that much cache memory.
The 6 vs 8 core chiplet are the same silicon, as are the X3D variants of same. They are picked over for yields, which is where the variations come in. The X3D chiplet is separate silicon added later. You might say they are all different vehicles based on the same chassis.
The full-fat Zen 5 EPYC use the same CCD as consumer parts, only the IOD and substrate are different. They did that once, with Zen and Zen+. They moved away from that idea for a reason.
Look at the current lineup of chiplet CPUs. They range from 6 or 8 cores on one die to 12 or 16 on 2 dice. To pair a single IMC with dual-channel memory with that combination you have a dilemma.
Option 1: split it in half, one IMC per chiplet. That gives you a latency penalty if you need to access Channel 2 from Chiplet 1 (same as existing) on 12 and 16 core models, so the benefit would be hit and miss. Also, you would limit 6 and 8 core models to single channel memory, and I doubt people would accept that limitations.
Option 2: double up. One full dual-channel IMC per CCD. You just made Threadripper with quad-channel memory. They are expensive for a reason, even the 12 and 16 core models. I doubt they could be compatible with standard AM5 with its dual-channel interface.
Option 3a: big CCD. Make the CCD 16 cores and chop it down for lesser models. Not economically viable for anything smaller than 12 cores. Probably not even that.
Option 3b: multiple sizes of CCD. Make 3-4 CCD sizes with its own IMC. You just reinvented monolithic chips. There is a reason AMD is making CCDs, and Intel is moving to that model. The APUs are all relatively small chips, which helps keep them relatively low cost.
Nope, the current light latency penalty is worth it, it is what is getting us 16 core gaming monsters for the relatively low prices we have.
Considering how long is left, there should even be a chance of seeing Zen 7 on AM5 as well.
Yes CCD/CCX is universal from a 6core R5 7500 up to the 128core EPYCs.
Leave APUs, ZenC and I/O dies out. Those dies are created to serve different needs. And your suggestion for AMD is to have even more different dies because you are stuck in the old monolithic design.
We all know that monolithic designs are faster, but also expensive because of much lower yields.
AMD is trying to keep dies as small as possible and you would like to get them bigger and bigger for the sake of latency?
AMD CPU engineers are so incompetent...
Thanks for reminding me. I highly doubt it would work any better on desktop.
I am going to keep arguing this as well. Yes Intel still has market share but AMD owns innovation in the CPU space. As such they have made the traditional way of reviewing CPUs inert at some level. Here is what I mean. Is the 8700G faster than a 7700X for IGPU Gaming? Is a 7800X3D slower than a 7700x in CPU intensive Games? Those are known factors now. So when the 7700X could not best the 5800X3D in Vcache Games did it make it slower in everything else? It is the 8700G review. There should be no DGPU numbers in IGPU tests, Especially now that we have a form factor on PC that relies on IGPU. Of course no one is going to listen because the narrative is so strong that this thread was made for a truth that has been with us for more than 15 years.
It won't make sense to integrate it with the actual chiplet silicon, but stacking it would have a lower latency penalty vs IF.
And you could add cache to the second die to buffer that compute cluster with its higher RAM latency.
For Bulldozer, you needed AM3+. There were new revisions of old AM3-boards, looking the same, except the colour of the socket, put you couldn't plug a Bulldozer-CPU into an pre-Bulldozer AM3-board. 970/990X/990FX-chipset was the same as 870/790F/890FX.
AM2 had a long life only in theory, too. With the right board, like many Asus and Gigabyte, you could upgrade from Athlon64 90nm F2-Stepping to PhenomII X4 45nm up to 95W (meaning 945 or 955 non BE). In reality, most board never got the needed BIOS-update, some boards from cheap manufacturers like ECS and Biostar didn't even get Athlon64 in 65nm.
But with the right Board, you could upgrade your P965- or i975X-board from the first 65nm Core 2 Duo "Conroe" up to the latest 45nm Core 2 Quad "Yorkfield" and stay superior to AMD the whole AM2, AM2+ and AM3-era. With the wrong board from the wrong manufacturer or with a nForce-chipset, you had to change board for FSB1333 and again for 45nm.
I made the mistake and bought a Abit KN9 Ultra with nForce 570 Ultra in fall of 2006. It never got a Phenom-BIOS because Abit went out of business, so I only got to Athlon64 X2 5400+ BE. Furthermore, it was a bad overclocker, so I only got my X2 3800+ to 2,7GHz instead of ~3GHz and my 5400+ to just 3,1GHz, but as a poor student, it had to soldier on until I got a Z87-board with 5670K in 2013.
Had I bought a Asus M2N-E or Gigabyte GA-M57SLI-(D)S4, I would have been able to upgrade to PhenomII X4 955. Or would I have bought an ASUS P965 (which would have been more expensive), I would have been able to upgrade to Core 2 Quad 9650 and OC that.
I personally would like to see stuff drop down the stack a level;
R3 6-core
R5 8-core
R7 12-core
R9 16-core
R9.5 8 Zen 6 cores + 16 Zen 6c cores. Unfortunately I think the 6c cores will be 32-core chiplets, so that is extremely unlikely. Perhaps using defective CCDs if EPYC doesn't take them all.
Primarily what next gen Ryzen needs desperately is faster data CCD-IOD interconnection, AKA higher InfinityFabric (FCLK) speed and maybe UMC (UCLK) speed also.
A better I/O Die all together.
Then we can talk about faster memory (8000~10000MT/s)
Current configurations (Zen5) cant be benefited much even with 10000MT/s.
X3Ds are bypassing (in a way) the FCLK, UCLK bottleneck with the extra cache connected directly to core CCD.
Maybe AMD is waiting until it gets to 2-4nm nodes for CCD/IOD because with the current 4/6nm its not possible to raise FCLK and UCLK without making the CPU package really power hungry.
Its the trade-off of any modular design. High yields, low cost but high-er power. Same story with RDNA3.
Dont get me wrong, the CPU IOD alone does not draw much power. But adding FCLK power on top it can be a substantial amount out of total package power (PPT).
Users of desktop 3000 up to 9000series who use HWiNFO64 and actually observe power metrics, know this first hand.
With the memory controllers and fabric providing best performance at 1:1 on Zen5, we're at the point where maybe Zen6 will need DDR5-6400 or 6800 at most.
Essentiallly AMD doesn't need and can't really use the full bandwidth of the fastest DDR5 right now because AMD is latency-limited, not bandwidth limited - so the move to DDR6 would actually hurt AMD rather than hinder it. It's why you should buy DDR5-6000 CL28 and tune it for tighter timings rather than faster frequencies, because all Zen5 wants is lower latencies.