News Posts matching #Lion Cove

Return to Keyword Browsing

Intel Core Ultra 9 275HX Defeats Core i9-14900HX In Cinebench R23 Multi-Core, While Losing Out in Single-Core

The Intel Core Ultra 9 275HX was unveiled by Big Blue at CES 2025, packing 8 Lion Cove performance cores and 16 Skymont efficiency cores for a total of 24 cores and 24 threads, thanks to Intel doing away with Hyper-Threading support. As such, we already had quite low expectations for multicore performance from Arrow Lake-HX, although a recently listed Cinebench R23 run appears to confirm the contrary. However, considering the nature of leaks, be sure to accept this information with a fair amount of skepticism until more information comes our way.

To be honest, this result is quite a doozy, for the aforementioned reason. Like its predecessor, the Core Ultra 9 275HX will also boast the same number of performance and efficiency cores, without Hyper-Threading support. But somehow, the result indicates that the 275HX handily outperforms the Core i9-14900HX in multicore performance by ~11%, despite losing out in single-core performance by the skin of its teeth. Of course, there are plenty of desktop-replacement laptops that can pull off higher multicore scores, although it would be best to stick to median figures considering that the details of the tested system are not known. Clearly, something is going on here, that I am unable to wrap my head around. It is possible that Intel has massively improved multicore scaling, but that is not what we witnessed with a recent Passmark result, where the Core Ultra 7 255H portrayed healthy improvements over its predecessor in single-core, but not quite so in multicore.

Gigabyte Unveils Mini PC with Core Ultra 5 225H CPU and up to 96 GB of Memory

The mini PC market has grown substantially in the past few years, in no small part thanks to the commendable performance and efficiency improvements brought to the table by the x86 giants. Gigabyte has unveiled its fair share of such systems, with its latest offering sporting an Intel Core Ultra 5 225H CPU paired with up to a whopping 96 GB of memory. As of right now, we do not have any concrete information regarding when the system will be made available to the public, and at what price. But given the system specifications and Gigabyte's track record, we can expect the system to command an affordable price tag.

As mentioned, the mini PC, dubbed the GB-BRU5-225H, is powered by the Intel Core Ultra 5 225H CPU including four high-performance "Lion Cove" cores, eight high-efficiency "Skymont" cores, as well as two additional "low power" cores for a total of 14 cores and 14 threads. The 12.6 x 3.4 x 11.9 cm mini PC has no room for discrete graphics, and has to rely on the integrated Arc 130T iGPU with eight Xe cores. The system can be equipped with up to 96 GB of DDR5-6400 memory courtesy of its dual SO-DIMM slots. Considering the specifications, the mini PC should be sufficiently potent for the vast majority of moderately intensive workloads thrown its way.

Intel Core Ultra 255H "Arrow Lake-H" Delivers 32% Single-Core Performance Improvement Over "Meteor Lake" Predecessor

Intel's Core Ultra 7 255H "Arrow Lake" processor has demonstrated impressive performance improvements in recent PassMark benchmarks, achieving a 32% higher single-core score compared to its "Meteor Lake" predecessor. The Arrow Lake-H chip recorded 4,631 points in single-threaded tests, significantly outpacing the Core Ultra 7 155H's 3,500 points while delivering a 15% overall improvement in CPU Mark ratings. The performance leap comes from Intel's architectural overhaul, implementing "Lion Cove" performance cores alongside "Skymont" efficiency cores on TSMC's N3B process node. This combination enables the 255H to achieve higher boost frequencies while maintaining the same core configuration as its predecessor—six P-cores, eight E-cores, and two Low Power Efficiency (LPE) cores.

Notable in this iteration is the absence of Hyper-Threading, resulting in 16 threads compared to the 155H's 22 threads. Arrow Lake-H maintains Intel's heterogeneous structure, incorporating up to eight Xe-LPG+ graphics cores derived from the Alchemist architecture. The neural processing unit (NPU) capabilities remain consistent with Meteor Lake, delivering 13 TOPS of INT8 performance. This positions the chip below Lunar Lake's 45 TOPS. Despite performance improvements, market success will largely depend on system integrators' ability to deliver compelling devices at competitive price points, particularly as AMD's Strix Point platforms maintain strong positioning in the $1,000 range. The battle of laptop chip supremacy is poised to be a good one in the coming quarters, especially as more Arm-based entries will force both Intel and AMD to compete harder.

China-exclusive Intel Core Ultra 5 230F Comes with Unique IHS Design

Intel tends to release exclusive desktop processor SKUs for the Chinese market, which tend to come with core configurations and other specs not found in regular SKUs available in the West. The latest such SKU is the Core Ultra 5 230F "Arrow Lake." This chip comes with a unique IHS (integrated heat spreader) design that sees the bulge over the die contracted to a corner. It still has the metal flanks that receive pressure from the socket's retention module. The chip is positioned a notch above the Core Ultra 5 225F, but with an identical core configuration of 6P+4E.

The China-exclusive Core Ultra 5 230F comes with clock speeds of 3.40 GHz base and 5.00 GHz boost for the P-cores, while its E-cores tick at 2.90 GHz base, and 4.40 GHz boost. In comparison, the generally available Core Ultra 5 225F does 3.30 GHz base and 4.90 GHz boost for the P-cores, and 2.70 GHz base with 4.40 GHz boost for the E-cores. Both the 230F and 225F lack integrated graphics. As non-K SKUs, both lack unlocked base frequency multipliers. Each of the six "Lion Cove" P-cores comes with 3 MB of dedicated L2 cache; while the sole "Skymont" E-core cluster shares 4 MB of L2 cache among its cores. The P-cores and E-core cluster share 20 MB of L3 cache. What's with the oddly shaped IHS? We have a theory. It's likely that the chip underneath has the same compact Compute tile as the "Arrow Lake-H" mobile processor, which physically only has 6P+8E cores and 24 MB of L3 cache. The modular nature of "Arrow Lake" also makes it possible for the Graphics tile to be physically absent on F-SKUs. We can't wait for someone to delid this chip.

Intel Accidently Publishes Core Ultra 3 205 "Arrow Lake-S" CPU Specs

Intel's Core Ultra 3 205 processor's spec sheet appeared online for a short period of time—members of the Team Blue subreddit discovered an official product page (now removed) and other related details. In part, discussion focused on the alleged lower-end "Arrow Lake-S" (ARL-S) desktop CPU being "reserved for OEMs." Previously, this SKU's existence was leaked out at various points back in 2024. VideoCardz has kindly preserved the latest set of information, prior to its removal from Intel's official web presence—showing a potential new addition to the Core Ultra 200S (Series 2) lineup.

The Core Ultra 3 205 model appears to slot into a segment previously occupied by (now retired) budget-oriented Pentium and Celeron products—based on the specification sheet listing of a 57 W TDP (aligning with past ratings). The Maximum Turbo Power limit is 76 W. Team Blue has inadvertently revealed that this is an eight-core processor, comprised of four Lion Cove P-Cores and four Skymont E-Cores—so 8 (4P + 4E). The performance-oriented cores can (Max Turbo) boost up to 4.9 GHz, while the efficiency-focused units are capable of reaching up to 4.4 GHz. The on-board AI Boost NPU is rated for a peak rating of 13 TOPS (Int8). The Core Ultra 3 205's GPU seems to only utilize two out of the four available Arc Xe-LPG cores. The product page mentioned that the Core Ultra 3 205 is due for launch in Q1 2025, although the "Market Status = Launched" segment adds to the confusion surrounding this now de-listed SKU.

Intel "Bartlett Lake" Appears as a P/E-Core Hybrid, P-Core Only CPUs Could Soon Follow

Intel has launched its first wave of Bartlett Lake processors, introducing hybrid-core models specifically designed for embedded systems, with pure performance-core (P-core) variants scheduled to follow later. The initial release, unveiled at CES, showcases the processors through congatec's new COM-HPC modules. The flagship Core 7 251E leads the embedded lineup with 24 cores (8P + 16E) and impressive clock speeds reaching 5.6 GHz boost. Intel claims this processor outperforms the i7-14700 by 6% in single-core and 8% in multi-core benchmarks, despite maintaining a modest 65 W TDP. The series also includes the Core 5 211E with 10 cores (6P + 4E) and the Core 3 201E featuring 4 P-cores. However, the more intriguing development lies ahead.

Earlier sources indicate that Intel plans to release pure P-core variants of Bartlett Lake in Q3 2025, targeting desktop users. These processors will introduce a more traditional approach by replacing E-core clusters with additional P-cores, resulting in configurations of up to 12 P-cores in the upcoming Core 9 series. The pure P-core models will maintain compatibility with existing LGA1700 motherboards, potentially offering an attractive upgrade path for current Intel platform users. The lineup is expected to include 8-core, 10-core, and 12-core variants under the Core 5, 7, and 9 brands respectively, with TDP options ranging from 45 W to 125 W. While the current embedded models focus on specialized applications like medical imaging and edge computing, the future P-core variants seem positioned to appeal to gamers. The processors are expected to utilize Raptor Cove cores, though rumors suggest Intel might consider backporting Lion Cove architecture to the platform.

Intel Announces Core Ultra 200H Series—Arrow Lake Gets LP Island Cores

The Core Ultra 200H series of mobile processors is designed to cover the majority of mobile device use-cases from the next-generation. These chips are very much based on the latest "Arrow Lake" microarchitecture, but with a few clever design changes. This is a tile-based processor, just like the 200HX series; but the various tiles are different. The Compute tile, which packs the main CPU complex, is noticeably smaller, with 6 "Lion Cove" P-cores, and two "Skymont" E-core clusters with 8 E-cores sharing a 24 MB L3 cache, and a ringbus interconnect. Things get interesting with the SoC tile, which now contains two Low-power Island E-cores. At this point, it is unclear if these are "Skymont," or are older generation "Crestmont" cores, which would mean that Intel has carried over the SoC tile from "Meteor Lake-H."

The SoC tile also contains at 13 TOPS-class NPU, which means these chips miss out on Microsoft Copilot+ AI PC logo. The idea behind this could be that Intel is trying to promote the Core Ultra 200V series "Lunar Lake," which comes with a powerful 45 TOPS NPU. The company is announcing several new models of "Lunar Lake" today, including vPro ones. Switching focus back to "Arrow Lake-H," and our attention is drawn back to the SoC and I/O tiles, which miss out on the number of PCIe lanes, particularly Gen 5 ones, which the Core Ultra 200HX chips come with. The game changer for this chip, however, is the large Graphics tile. The iGPU of "Arrow Lake-H" is based on the same Xe-LPG graphics architecture as the one on "Meteor Lake," and not Xe2 "Battlemage" like on "Lunar Lake." However, this iGPU is vastly different from the one the "Arrow Lake-HX" comes with.

Intel "Panther Lake" Confirmed on 18A Node, Powering-On With ES0 Silicon Revision

During Barclays 22nd Annual Global Technology Conference, Intel was a guest and two of the interim company co-CEOs Michelle Johnston Holthaus and David Zinsner gave a little update on the state of affairs at Intel. One of the most interesting aspects of the talk was Intel's upcoming "Panther Lake" processor—a direct successor to Intel Core Ultra 200S "Arrow Lake-H" mobile processors. The company confirmed that Panther Lake would utilize an Intel 18A node and that a few select customers have powered on Panther Lake on the E0 engineering sample chip. "Now we are using Intel Foundry for Panther Lake, which is our 2025 product, which will land on 18A. And this is the first time that we're customer zero in a long time on an Intel process," said interim co-CEO Michelle Johnston Holthaus, adding, "But just to give some assurances, on Panther Lake, we have our ES0 samples out with customers. We have eight customers that have powered on, which gives you just kind of an idea that the health of the silicon is good and the health of the Foundry is good."

While we don't know what ES0 means for Intel internally, we can assume that it is one of the first engineering samples on the 18A. The "ES" moniker usually refers to engineering samples, and zero after it could be the first design iteration. For reference, Intel's "Panther Lake-H" will reportedly have up to 18 cores: 6 P-cores, 8 E-cores, and 4 LP cores. The design brings back low-power island E-cores in the SoC tile. The P-cores use "Cougar Cove," which should have a higher IPC than "Lion Cove," while keeping the existing "Skymont" E-cores. The SoC tile may move from Arrow Lake's 6 nm to a newer process to fit the LP cores and an updated NPU. The iGPU is said to use the Xe3 "Celestial" architecture. With Arrow Lake-H launching in early 2025, Panther Lake-H likely won't arrive until 2026.

Intel's Arrow Lake-S Launch Line-up Confirmed in New Leak

Intel's Arrow Lake-S launch line-up has been confirmed courtesy of serial leaker @9550pro on X/Twitter and although the leaked Intel product slide doesn't contain any real surprises by now, it does confirm that Intel will launch five different SKUs later this month. The Core 200S-series should be unveiled on Thursday by Intel, but retail availability isn't expected until the 24th of October. The Initial five CPU SKUs will be the Core Ultra 9 285K, the Core Ultra 7 265K and 265KF and finally the Core Ultra 5 245K and 245KF. As noted earlier today in the performance leak of the Core Ultra 9 285K, the entire Arrow Lake-S series will lack Hyper-Threading in favour of more E-cores. The Core Ultra 9 285K features eight Lion Cove P-cores and 16 Skymont E-cores, followed by the Core Ultra 7 265 SKUs which retain the Lion Cove core count, but ends up with only 12 Skymont cores. Finally, the Core Ultra 5 SKUs have six Lion Cove P-cores and eight Skymont E-cores. All the upcoming SKUs feature Intel's Thermal Velocity Boost, a feature that used to be exclusive to the Core i9 tier of CPUs in the past, but only the Core Ultra 9 and Ultra 7 SKUs support Intel Turbo Boost Max Technology 3.0. The Core Ultra 9 and Ultra 7 SKUs have a maximum TDP of 250 W, with the Core Ultra 5 SKUs peaking at 159 W. All five processors have a base power of 125 W.

As such, we're looking at boost speeds of up to 5.7 GHz for the Core Ultra 9, 5.5 GHz for the Core Ultra 7 and 5.2 GHz for the Core Ultra 5 processors. The Core Ultra 5 has the highest base frequency of the three SKUs with the P-cores clocking in at 4.2 GHz and the E-cores at 3.6 GHz. The Core Ultra 7 follows at 3.9 GHz for the P-Cores and 3.3 GHz for the E-cores and finally the Core Ultra 9 has a base frequency of 3.7 GHz for the P-Cores and 3.2 GHz for the E-cores. Intel has upped the JEDEC memory support to DDR5-6400, which is an 800 MHz jump in the officially supported memory speed from its 14th Gen Core i processors. Up to 192 GB of RAM is supported, which is the same as the previous generation of desktop CPUs from Intel. The IGP sports four Xe-cores across the board of the K SKU CPUs, with a base clock of 300 MHz and a boost clock of up to 2 GHz, although the Core Ultra 5 SKUs end up with an IGP that only boosts to 1.9 GHz. All SKUs also feature a third generation NPU capable of 13 TOPS, which is a lot weaker than the mobile Core Ultra 200V Lunar Lake CPUs which have an NPU capable of up to 48 TOPS, depending on the SKU. As this leak appears to be from the same original source as the performance figures that leaked earlier, we'd assume the information is correct, especially as it lines up with earlier leaks, but it should still be taken with a pinch of salt until everything has been confirmed by Intel.

Intel's Core Ultra 9 285K Performance Claims Leaked, Doesn't Beat i9-14900K at Gaming

The Chinese tech press is abuzz with slides allegedly from Intel's pre-launch press-deck for the Core Ultra 2-series "Arrow Lake-S." The most sensational of these are Intel's first-party performance claims for the top Core Ultra 9 285K model. There's good news and bad news. Good news first—Intel claims to have made a big leap in energy efficiency with "Arrow Lake," and the 285K should offer gaming performance comparable to the current Core i9-14900K at around 80 W lower power draw for the processor. But then there in lies the bad news—despite claimed IPC gains for the "Lion Cove" P-core, and rumored clock speeds being on par with the "Raptor Cove" P-cores on the i9-14900K, the 285K is barely any faster than its predecessor in absolute terms.

In its first party testing, when averaged across 12 game tests, which we used Google optical translation to make out the titles of, Intel used performance numbers of the i9-14900K as the mean. The 285K beats the i9-14900K in only four games—Warhammer 40K: Space Marine 2, Age of Mythology Retold, Civilization VI: Gathering Storm, and F1 23. It's on-par with the i9-14900K in Red Dead Redemption 2, Total War: Pharaoh, Metro Exodus, Cyberpunk 2077, Black Myth: Wukong, Rainbow Six Siege. It's slower than the i9-14900K in Far Cry 6, FF XIV, F1 24, Red Dead Redemption 2. Averaged across this bench, the Core Ultra 9 285K ends up roughly on par with the Core i9-14900K in gaming. Intel also compared the 285K to AMD's Ryzen 9 9950X, and interestingly, even the Ryzen 9 7950X3D.

Image Leaks of Intel Core Ultra 9 285K Confirm Chiplet-based Design Similar to Meteor Lake

Some of the first images of a de-lidded Intel Core Ultra 9 285K "Arrow Lake-S" processor surfaced on the web, confirming a disaggregated chiplet-based processor design. Intel pivoted to chiplet based processors with its Core Ultra "Meteor Lake," allowing it to build specific IP blocks of the processor on different foundry nodes, ensuring the ones that don't need the most advanced nodes can make do with slightly older ones, thereby maximizing Intel's yields for that advanced node. The die shot reveals a similar level of disaggregation to "Meteor Lake" than that of the more recent Core Ultra 200V "Lunar Lake" mobile processor.

With "Lunar Lake," Intel had re-aggregated a few things. "Lunar Lake" only has two tiles—SoC tile and I/O tile. The 3 nm SoC tile contains the CPU complex, a large iGPU, and a large 40 TOPS-class NPU, all sharing die-space with the memory controllers, and PCIe root complex. The smaller 6 nm I/O tile contains the PHYs of the various I/O interfaces. The "Arrow Lake" chip appears to have a similar degree of disaggregation as "Meteor Lake." We can spot at least five tiles sitting on top of the Foveros base tile. The picture has no annotation for the various tiles, but recent reports by Moore's Law is Dead and Jay Kihn shed some light on what these could be.

Intel "Lunar Lake" Compute Tile Annotated and PCH Tile Pictured

Some of the first die-shots and annotations of the Intel Core Ultra 200V "Lunar Lake" processor surfaced on the web, thanks to die-shots by GeenWens and Kurnalsalts on Twitter. Be sure to check out our Lunar Lake Technical Deep-dive article to learn the basics of how Lunar Lake is different from "Meteor Lake." Both are disaggregated chiplet-based processors, but Lunar Lake remodels things a bit. All the logic engines of the processor—the CPU, the iGPU, and the NPU, are located in a centralized Compute tile that's built on the TSMC 3 nm process, while all the I/O controllers are spun out to the Platform Controller tile built on TSMC 6 nm, which sit on a Foveros base tile that acts as an interposer, facilitating high-density microscopic connections between the two tiles. The base tile sits on the fiberglass substrate, which also has stacked LPDDR5X memory for either 16 GB or 32 GB of on-package system memory.

The Kurnalsalts annotation provides a good lay of the land for the Compute tile. The most striking aspect of it is the CPU. "Lunar Lake" comes with a 4P+4E core hybrid CPU, but the two kinds of cores do not share a last-level cache or sit in a ringbus, unlike in case of the Compute tile of "Meteor Lake." The four "Lion Cove" P-cores each come with 2.5 MB of dedicated L2 caches, and share a 12 MB L3 cache. The four "Skymont" E-cores are not part of the ringbus connecting the four P-cores, rather they are physically separated, much like the low-power island E-cores on "Meteor Lake." The E-core cluster shares a 4 MB L2 cache among the four E-cores. This E-core cluster is directly connected to the switching fabric of the Compute tile.

Intel Core Ultra 9 285K Flagship "Arrow Lake" CPU Box Leaks

Intel's Core Ultra 200 series "Arrow Lake" CPU generation is bringing a complete P/E core redesign and, allegedly, a new package. According to VideoCardz, Intel's flagship SKU—Core Ultra 9 285K—features a completely redesigned box with new accent colors. Colors of choice include blue, black, and gray tones with a futuristic look. At the center of the new box is grey plastic packaging that protects and holds the actual processor. As the recent leaks suggested, this SKU will boast 8 "Lion Cove" P-Cores and 16 "Skymont" E-Cores without Hyper-Threading and with a maximum boost of 5.7 GHz. All of this will be packed inside a 125-watt power envelope. While we await the official launch, supposedly scheduled for October 10 and released on October 24, we can preview the new packaging box that Intel prepared for its new CPU family.

Intel Royal Core Successor Rumored to be Codenamed Cobra Core

Intel's future processor microarchitectures and their constituent CPU cores have hit the rumor-mill. The "Lion Cove" P-core is now current-gen, as products based on the Core Ultra 200V "Lunar Lake" processor, which implements it, have been announced. "Lion Cove" will also be the main workhorse of "Arrow Lake," and Intel's Xeon 7 P-core server processors. The core ditches Hyper-Threading, but introduces a double-digit percent IPC gain over "Raptor Cove." The thunder of "Lion Cove" was stolen by the new "Skymont" E-core during the "Lunar Lake" technical presentations, as it offers nearly the same IPC as "Raptor Cove," at much lower power, and is held back by a lack of HTT and its inability to operate at high clock speeds that "Raptor Cove" can. We predict "Skymont" is shaking things up at Intel, and will have an impact on the way the company's future CPU cores are designed—to place greater emphasis on power and die-area to achieve IPC growth targets with each generation.

The successor to "Lion Cove" is codenamed "Royal Core." This would be the first time in over five years (since "Sunny Cove") that Intel's P-core codename doesn't use "Cove," signaling a departure from that naming scheme. The first iteration of "Royal Core" will power Intel's "Nova Lake" microarchitecture that succeeds "Lunar Lake." A slightly updated version of this core, codenamed "Royal Core 1.1," will power the "Beast Lake" microarchitecture, which likely falls in the lineage of "Arrow Lake," if not being a direct successor to it. An alleged Intel employee's work project description revealed "Cobra Core," a CPU core that succeeds "Royal Core," although the codename of its parent microarchitecture hasn't been revealed. Microarchitectures such as "Beast Lake," and its successor implementing "Cobra Core" are slated for much later into the decade, and we don't expect them to see the light of the day till at least 2026-27, if not later.

Intel Readies "Arrow Lake" Variant with Oversized iGPU to Take on AMD "Strix Halo"

AMD "Strix Halo" isn't just a mobile processor with an oversized iGPU meant to power "gaming ultraportables," it has other potential applications such as game consoles (both handheld and standalone). Not willing to cede this market to AMD, Intel is reportedly readying its own such chip, which is being reported as the "Arrow Lake Halo" for the lack of an official name. This chip will feature a large iGPU based on the Xe2 "Battlemage" graphics architecture, the variant of Xe2 Intel plans to use for its next-generation Arc discrete GPUs. The CPU compute complex will be carried over from the regular "Arrow Lake" chips, and feature a mix of "Lion Cove" P-cores, and "Skymont" E-core clusters.

To meet the higher memory bandwidth demand that arises from a high-performance iGPU and CPU, AMD designed the RDNA 3.5 graphics architecture to be more LPDDR5-aware, since at the physical layer, LPDDR operates differently from GDDR. Intel will probably do something similar, and deploy a 256-bit wide LPDDR5/x memory interface replacing the 128-bit wide interface the regular "Arrow Lake" mobile chips come with. Whether "Arrow Lake Halo" and "Strix Halo" remain competitive will depend a lot on which gaming experiences the two companies want to sell. The way the iGPU of "Strix Halo" is rumored to be specced suggests something that is 1440p-capable, or 4K-capable with FSR 3.

Intel Readies Core Ultra 3 205, Brings E-cores to the "3" Tier

Intel may have debuted its Hybrid (heterogeneous multicore) architecture for the desktop with the 12th Gen Core "Alder Lake-S," but the value-ended Core i3 series SKUs throughout the 12th, 13th, and 14th Gen Core processors have remained 4-core/8-thread traditional multicore chips, with just four P-cores. Intel is about to change this with the Core Ultra 200 series "Arrow Lake-S." According to OneRaichu, a reliable source with Intel leaks, the company is giving finishing touches to a pair of Core Ultra 3 series desktop processor SKUs based on the "Arrow Lake" microarchitecture. These will be 8-core chips, a doubling in core-count form the past generations, but the nature of these 8 cores is not yet known.

Among the SKUs in the leak are the Core Ultra 3 205, and the Core Ultra 3 215, both of which are 8-core chips. The two are probably differentiated in a similar manner to past generations of Intel Core i3 desktop did, using cache sizes (eg: Core i3-10100 and i3-10300). The chips probably feature a 4P+4E core configuration, as a "2P+6E" configuration might not be possible, as the E-core clusters are indivisible, although we don't know if the same rule applies to the "Skymont" E-core clusters. The dedicated L2 caches of both the P-cores and E-core clusters could be smaller than on Core Ultra 5 and above SKUs. The Core Ultra 200V "Lunar Lake" processor uses "Lion Cove" P-cores with 2.5 MB of L2 cache per core, while the Core Ultra 9 285K probably has "Lion Cove" P-cores with 3 MB of L2 cache per core.

Intel Core Ultra 200 "Arrow Lake-S" Lineup and Clock Speeds Revealed

Intel is preparing at least twelve Core Ultra 200-series "Arrow Lake-S" desktop processor SKUs for the consumer segment, with more variants possible for the commercial desktop segment in the future. Q4 2024 could see the company debut its first SKUs targeting the PC enthusiast and gamer crowd with as many as five unlocked K or KF series SKUs. These, and finer details such as clock speeds, were revealed in a massive info dump by Jaykihn, a reliable source with Intel leaks. Intel is expected to debut the series later this year with the Core Ultra 9 285K, the Core Ultra 7 265K and 265KF; and the Core Ultra 5 245K and 245KF. The company is skipping a KF SKU for its top Core Ultra 9 part.

As has been consistent for several past generations of Intel processors, the top Core Ultra 9 (formerly Core i9) tier gets Thermal Velocity Boost, Turbo Boost Max 3.0, and classic Turbo Boost 2.0. The 285K maxes out the "Arrow Lake-S" B0 silicon, enabling all 8 "Lion Cove" P-cores, and all 16 "Skymont" E-cores. It comes with a P-core base frequency of 3.70 GHz, and an impressive 3.20 GHz E-core base frequency. The maximum P-core boost frequency achievable for up to two cores is 5.70 GHz, and 3-6 as well as 7-8 cores boost up to 5.40 GHz, making it the all-P-core boost frequency for this chip. The four E-core clusters are assured an all-E-core boost frequency of 4.60 GHz. The iGPU has 64 execution units, and ticks at up to 2.00 GHz.

Top Intel Core Ultra 9 "Arrow Lake-S" Part Boost Clocks Surface

Intel Core Ultra "Arrow Lake-S" desktop processors are expected to debut later this year, and introduce the new Lion Cove P-cores, along with Skymont E-cores to the desktop platform. Engineering samples and qualification samples with specs close to retail chips seem to already be in the hands of PC OEMs and motherboard vendors, given the volume of leaks over the past few days. Jaykihn0, one of the more influential sources of these leaks, revealed a few interesting details of the maximum boost frequencies of these chips.

The QS of a top Core Ultra 9 "Arrow Lake-S" SKU, probably the flagship model that succeeds the current Core i9-14900K, is described as having a maximum P-core boost frequency of 5.70 GHz, and an all-P-core boost frequency of 5.40 GHz. The maximum E-core boost frequency, which is also the all-E-core boost frequency, is said to be 4.60 GHz. Let's unpack this. "Arrow Lake" uses the same mix of "Lion Cove" P-cores and "Skymont" E-cores as "Lunar Lake," albeit arranged along a ringbus, and sharing an L3 cache, unlike on "Lunar Lake," where the P-cores have their own exclusive L3 cache, and the E-cores are arranged in a low-power island, with the fabric of the SoC tile connecting the two.

Intel Core Ultra 200V "Lunar Lake" Launches on September 3: Acer

Intel's ambitious new ultraportable mobile processor series, the Core Ultra 200V series "Lunar Lake," launches on September 3, according to an Acer announcement for a media event covering the launch of its notebooks based on these chips. Acer scheduled this event on September 4, which means Intel to launch these processors no later than September 3. Media events by PC OEMs tend to follow a day after Intel's launch of a new processor generation or platform. A September 3 launch would precede the IFA 2024 Conference in Berlin, which kicks off on September 6, but which is open to press and industry delegates a little sooner, as is the norm for trade shows.

The Core Ultra 200V "Lunar Lake" is Intel's first processor generation to implement MoP (memory on package), eliminating the need for discrete memory modules. This reduces the Z height as well as PCB footprint of the platform, enabling thinner notebooks. MoP also has certain power and latency advantages compared to discrete memory. The compute complex of "Lunar Lake" consists of a 4P+4E CPU with "Lion Cove" P-cores, and "Skymont" E-cores. This is also the first processor to debut Intel's Xe2 "Battlemage" graphics architecture, as it powers its iGPU. It packs a powerful NPU that meets Microsoft Copilot+ AI PC requirements. You can learn all about "Lunar Lake" in our architecture deep-dive.

CPU-Z Screenshot of Alleged Intel Core Ultra 9 285K "Arrow Lake" ES Surfaces, Confirms Intel 4 Process

A CPU-Z screenshot of an alleged Intel Core Ultra 9 285K "Arrow Lake-S" desktop processor engineering sample is doing rounds on social media, thanks to wxnod. CPU-Z identifies the chip with an Intel Core Ultra case badge with the deep shade of blue associated with the Core Ultra 9 brand extension, which hints at this being the top Core Ultra 9 285K processor model, we know it's the "K" or "KF" SKU looking at its processor base power reading of 125 W. The chip is built in the upcoming Intel Socket LGA1851. CPU-Z displays the process node as 7 nm, which corresponds with the Intel 4 foundry node.

Intel is using the same Intel 4 foundry node for "Arrow Lake-S" as the compute tile of its "Meteor Lake" processor. Intel 4 offers power efficiency and performance comparable to 4 nm nodes from TSMC, although it is physically a 7 nm node. Likewise, the Intel 3 node is physically 5 nm. If you recall, the main logic tile of "Lunar Lake" is being built on the TSMC N3P (3 nm) node. This means that Intel is really gunning for performance/Watt with "Lunar Lake," to get as close to the Apple M3 Pro as possible.

Intel Planning P-core Only "Bartlett" LGA1700 Processor for 2025

In a surprising development, Intel plans to extend the longevity of its Socket LGA1700 platform even as the newer LGA1851 platform led by the Core Ultra 200 "Arrow Lake" remains on track for a late-Q3/early-Q4 2024 debut. This, according to a sensational leak by Jaykihn. It plans to do this with a brand-new silicon for LGA1700, codenamed "Bartlett." This should particularly interest gamers for what's on offer. Imagine the "Raptor Lake-S" die, but with four additional P-cores replacing the four E-core clusters, making a 12-core pure P-core processor—that's "Bartlett." At this point we're not sure which P-core is in use—whether it's the current "Raptor Cove," or whether an attempt will be made by Intel to backport a variant of "Lion Cove" to LGA1700.

This wouldn't be the first pure P-core client processor from Intel after its pivot to heterogeneous multicore—the "Alder Lake" H0 die has six "Golden Cove" P-cores, and lacks any E-core clusters. Intel is planning to give launch an entire new "generation" of processor SKUs for LGA1700 which use the newer client processor nomenclature by Intel, which is Core 200-series, but without the "Ultra" brand extension. There will be SKUs in the Core 3, Core 5, Core 7, and Core 9 brand extensions. Some of these will be Hybrid, and based on the rehashed "Raptor Lake-S" 8P+16E silicon, and some "Alder Lake-S" 8P+8E; but "Bartlett" will be distinctly branded within the series, probably using a letter next to the numerical portion of the processor model number. There will not be any Core 3 series chips based on "Bartlett," but Core 5, Core 7, and Core 9.

Intel Core Ultra 200 "Arrow Lake-S" Desktop Processor Core Configurations Surface

Intel is preparing a complete refresh of its desktop platform this year, with the introduction of the Core Ultra 200 series processors based on the "Arrow Lake" microarchitecture. The company skipped a desktop processor based on "Meteor Lake," probably because it didn't meet the desired multithreaded performance targets for Intel as it maxed out at 6P+8E+2LP, forcing Intel to come up with the 14th Gen Core "Raptor Lake Refresh" generation to see it through 2H-2023 and at least three quarters of 2024. The company, in all likelihood, will launch the new "Arrow Lake-S" Core Ultra 200 series toward late-Q3 or early-Q4 2024 (September-October). The first wave will include the overclocker-friendly K- and KF SKUs, alongside motherboards based on the top Intel Z890 chipset. 2025 will see the series ramp to more affordable processor models, and mainstream chipsets, such as the B860. These processors require a new motherboard, as Intel is introducing the new Socket LGA1851 with them.

Core configurations of the "Arrow Lake-S" chip surfaced on the web thanks to Jaykihn, a reliable source with Intel leaks. In its maximum configuration, the chip is confirmed to feature 8 P-cores, and 16 E-cores. There are no low-power island E-cores. Each of the 8 P-cores is a "Lion Cove" featuring 3 MB of dedicated L2 cache; while each the E-cores are "Skymont," arranged in 4-core modules that share 4 MB L2 caches among them. Intel claims that the "Lion Cove" P-core offers a 14% IPC increase over the "Redwood Cove" P-core powering "Meteor Lake," which in turn had either equal or a 1% IPC regression compared to "Raptor Cove." This would put "Lion Cove" at a 13-14% IPC advantage over the "Raptor Cove" cores. It's important to note here, that the "Lion Cove" P-cores lack HyperThreading, so Intel will be banking heavily on the "Skymont" E-cores to shore up generational multithreaded performance increase. "Skymont" was a show-stopper at Intel's Computex event, with a nearly 50% IPC gain over previous generations of Intel E-cores, which puts it at par with the "Raptor Cove" cores in single-thread performance.

Intel "Arrow Lake-S" Engineering Sample Posts Over 25% 1T Perf Gain Over i9-13900K, Falls Behind in nT

An unnamed Intel Core Ultra "Arrow Lake-S" desktop processor engineering sample (ES) made it to the hands of someone willing to post its CPU-Z Bench screenshot. The processor allegedly scores a whopping 1143.2 points in the CPU-Bench single-thread benchmark; and 12922.4 points in the multithreaded benchmark. When compared with the internal Intel Core i9-13900K reference scores of CPU-Z, the single-thread benchmark score is a staggering 26.71% increase over that of the i9-13900K (902 points); while the multithreaded score is 22% lower.

Since we don't know which processor model this "Arrow Lake-S" ES is, we have no way of telling if it is the top SKU with its rumored 8P+16E core configuration, or a mid-tier Core i5 SKU with the expected 6P+8E configuration. The single-threaded test only loads one P-core, and here the IPC of one of the chip's "Lion Cove" P-cores is able to trounce one of the "Raptor Cove" P-cores of the i9-13900K reference score. You also have to understand that the Hyper-Threading plays no role in this thread. Where it could play a role is the multithreaded test. "Lion Cove" lacks HTT support unlike "Raptor Cove," and the i9-13900K is a 24-core/32-thread processor. It's important to note here, that "Arrow Lake" doesn't just have up to 8 "Lion Cove" P-cores, but also up to 16 "Skymont" E-cores that Intel claims to have achieved a massive IPC gain over its predecessor, bringing its IPC in the league of past-generation P-cores such as the "Raptor Cove" or "Golden Cove."

Intel Core Ultra 200V Lunar Lake Family Leaks: Nine Models with One Core 9 Ultra SKU

During Computex 2024, Intel announced the next-generation compute platform for the notebook segment in the form of the Core Ultra 200V series, codenamed Lunar Lake. Set for release in September 2024, these processors are generating excitement among tech enthusiasts and industry professionals alike. According to the latest leak by VideoCardz, Intel plans to unveil nine variants of Lunar Lake, including Core Ultra 7 and Core Ultra 5 models, with a single high-end Core Ultra 9 variant. While exact specifications remain under wraps, Intel's focus on artificial intelligence capabilities is clear. The company aims to secure a spot in Microsoft's Copilot+ lineup by integrating its fourth-generation Neural Processing Unit (NPU), boasting up to 48 TOPS of performance. All Lunar Lake variants are expected to feature a hybrid architecture with four Lion Cove performance cores and four Skymont efficiency cores.

This design targets low-power mobile devices, striking a balance between performance and energy efficiency. For graphics, Intel is incorporating its next-generation Arc technology, dubbed Battlemage GPU, which utilizes the Xe2-LPG architecture. The leaked information suggests that Lunar Lake processors will come with either 16 GB or 32 GB of non-upgradable LPDDR5-8533 memory. Graphics configurations are expected to include seven or eight Xe2 GPU cores, depending on the model. At the entry level, the Core Ultra 5 226V is rumored to offer a 17 W base power and 30 W maximum turbo power, with performance cores clocking up to 4.5 GHz. The top-tier Core Ultra 9 288V is expected to push the envelope with a 30 W base power, performance cores boosting to 5.1 GHz, and an NPU capable of 48 TOPS. You can check out the rest of the SKUs in the table below.

Intel Readies Arrow Lake-H Laptop CPU SKU with 24 Cores Based on Desktop Arrow Lake-S

As Intel gears for the launch of Lunar Lake and Arrow Lake processors, the company appears to be preparing a new line of high-performance processors for gaming laptops. Recent developments suggest that the company is adapting its desktop-grade Arrow Lake-S chips for use in ultra-high-performance notebooks. The buzz began when X user @InstLatX64 spotted Intel testing a peculiar motherboard labeled "Arrow Lake Client Platform/ARL-S BGA SODIMM 2DPC." This discovery hints at the possibility of Intel packing up to 24 cores into laptop processors, eight more cores compared to the 16 cores expected in standard Arrow Lake-H mobile chips. By utilizing the full potential of Arrow Lake-S silicon in a mobile form factor, Intel aims to deliver desktop-class performance to high-end notebooks in a BGA laptop CPU.

The leaked chip would likely feature eight high-performance Lion Cove P-cores and 16 energy-efficient Skymont E-cores, along with an integrated Xe2 GPU. This configuration could provide the raw power needed for demanding games and professional applications in a portable package. However, implementing such powerful hardware in laptops presents challenges. The processors are expected to have a TDP of 45 W or 55 W, with actual power consumption potentially exceeding these figures to maintain high clock speeds. Success will depend not only on Intel's chip design but also on the cooling solutions and power delivery systems developed by laptop manufacturers. As of now, specific details about clock speeds and performance metrics remain under wraps. The test chip that surfaced showed a base frequency of 3.0 GHz, notably without AVX-512 support.
Return to Keyword Browsing
Feb 21st, 2025 19:41 EST change timezone

New Forum Posts

Popular Reviews

Controversial News Posts