News Posts matching #7 nm

Return to Keyword Browsing

New AMD Radeon Pro 5000 XT Series GPUs Bring Exceptional Graphics Performance to Updated 27-inch Apple iMac

AMD today announced availability of new AMD Radeon Pro 5000 series GPUs for the updated 27-inch iMac. The new GPUs power a wide variety of graphically intensive applications and workloads, unleashing creativity and productivity for consumer and professional users alike. The new AMD Radeon Pro 5000 series GPUs are built on industry-leading 7 nm process technology and advanced AMD RDNA graphics architecture. They feature up to 40 compute units and up to 16 GB of high-speed GDDR6 memory while delivering up to 7.6 teraflops of single precision (FP32) computational performance.

"AMD Radeon Pro 5000 series GPUs bring new levels of performance and flexibility to the updated 27-inch iMac," said Scott Herkelman, corporate vice president and general manager, Graphics Business Unit at AMD. "The new AMD GPUs offer the optimal combination of compute performance, energy efficiency and outstanding graphics features to power a wide range of applications - from consumer to pro - wherever graphics matter the most."

DigiTimes Research: China 14th 5-year Plan to see IC Foundry Capacity Expand 40%

China's upcoming 14th five-year plan (2021-2025) will continue to highlight technology and capacity upgrades as the core of its semiconductor self-sufficiency strategy, with foundry capacity projected to expand 40% from the preceding plan and fabrication process expected to advance to 7 nm, according to Digitimes Research.

Bolstered by national policies in the 13th five-year plan, China's IC manufacturing industry is expected to see combined revenues double to CNY240 billion (US$34.28 million) in 2020 from 2016, and may also move 12 nm to production by the end of the year after having volume produced 14 nm process.

AMD Confirms "Zen 4" on 5nm, Other Interesting Tidbits from Q2-2020 Earnings Call

AMD late Tuesday released its Q2-2020 financial results, which saw the company rake in revenue of $1.93 billion for the quarter, and clock a 26 percent YoY revenue growth. In both its corporate presentation targeted at the financial analysts, and its post-results conference call, AMD revealed a handful interesting bits looking into the near future. Much of the focus of AMD's presentation was in reassuring investors that [unlike Intel] it is promising a stable and predictable roadmap, that nothing has changed on its roadmap, and that it intends to execute everything on time. "Over the past couple of quarters what we've seen is that they see our performance/capability. You can count on us for a consistent roadmap. Milan point important for us, will ensure it ships later this year. Already started engaging people on Zen4/5nm. We feel customers are very open. We feel well positioned," said president and CEO Dr Lisa Su.

For starters, there was yet another confirmation from the CEO that the company will launch the "Zen 3" CPU microarchitecture across both the consumer and data-center segments before year-end, which means both Ryzen and EPYC "Milan" products based on "Zen 3." Also confirmed was the introduction of the RDNA2 graphics architecture across consumer graphics segments, and the debut of the CDNA scalar compute architecture. The company started shipping semi-custom SoCs to both Microsoft and Sony, so they could manufacture their next-generation Xbox Series X and PlayStation 5 game consoles in volumes for the Holiday shopping season. Semi-custom shipments could contribute big to the company's Q3-2020 earnings. CDNA won't play a big role in 2020 for AMD, but there will be more opportunities for the datacenter GPU lineup in 2021, according to the company. CDNA2 debuts next year.

TSMC Doesn't See Intel as Long-Term Customer, Unlikely to Build Additional Capacity for It

TSMC has been the backbone of silicon designers for a long time. Whenever you question where you can use the latest technology and get some good supply capacity, TSMC got everyone covered. That case seems to be similar to Intel and its struggles. When Intel announced that its 7 nm semiconductor node is going to be delayed a full year, the company's customers and contractors surely became worried about the future releases of products and their delivery, like the case is with Aurora exascale supercomputer made for Argonne National Laboratory, which relies on Intel's 7 nm Ponte Vecchio graphics cards for most of the computation power.

To manage to deliver this, Intel is reportedly in talks with TSMC to prepare capacity for the GPUs and deliver them on time. However, according to industry sources of DigiTimes, TSMC is unlikely to build additional capacity for Intel, besides what it can deliver now. According to those sources, TSMC does not see Intel as a long-term customer and it is unknown what treatment will Intel get from TSMC. Surely, Intel will be able to make a deal with TSMC and secure enough of the present capacity for delivering next-generation processors.

TSMC Allocation the Next Battleground for Intel, AMD, and Possibly NVIDIA

With its own 7 nm-class silicon fabrication node nowhere in sight for its processors, at least not until 2022-23, Intel is seeking out third-party semiconductor foundries to support its ambitious discrete GPU and scalar compute processor lineup under the Xe brand. A Taiwanese newspaper article interpreted by Chiakokhua provides a fascinating insight to the the new precious resource in the high-technology industry - allocation.

TSMC is one of these foundries, and will give Intel access to a refined 7 nm-class node, either the N7P or N7+, for some of its Xe scalar compute processors. The company could also seek out nodelets such as the N6. Trouble is, Intel will be locking horns with the likes of AMD for precious foundry allocation. NVIDIA too has secured a certain allocation of TSMC 7 nm for some of its upcoming "Ampere" GPUs. Sources tell China Times that TSMC will commence mass-production of Intel silicon as early as 2021, on either N7P, N7+, or N6. Business from Intel is timely for TSMC as it is losing orders from HiSilicon (Huawei) in wake of the prevailing geopolitical climate.

In Wake of Intel's 7nm Woes, AMD's Price per Stock Vaults Over the Blue Giant

Intel's announcement today that their 7 nm node is facing difficulties is being taken one of two ways: as an unmitigated disaster by some, and with a tentative carefulness (lest we see another 10 nm repeat) from others. However one looks at this setback, which means AMD will still enjoy a process lead over Intel for some extra time, this is good news for AMD in more ways than just that one.

Case in point: stock price. While AMD has a much lower market cap than Intel (calculated by multiplying the value of a single stock by the number of total issued stocks), today, for the first time since 2006, AMD's shares were more valuable than Intel's on a per-share basis. AMD's $70 billion market cap still pales in comparison to Intel's $215 billion. At time of writing, AMD's stock pricing is $18 higher than Intel, at $68.67 compared to Intel's $50.79. A first in many years for the green company.

Intel 7nm CPUs Delayed by a Year, Alder Lake in 2H-2021, Other Commentary from Intel Management

Intel's silicon fabrication woes refuse to torment the company's product roadmaps, with the company disclosing in its Q2-2020 financial results release that the company's first CPUs built on the 7 nanometer silicon fabrication node are delayed by a year due to a further 6-month delay from prior expectations. The company will focus on getting its 10 nm node up to scale in the meantime.

The company mentioned that the 10 nm "Tiger Lake" mobile processor and "Ice Lake-SP" enterprise processor remains on-track for 2020. The company's 12th Generation Core "Alder Lake-S" desktop processors won't arrive before the second half of 2021. In the meantime, Intel will launch its 11th Gen Core "Rocket Lake" processor on the 14 nm node, but with increased IPC from the new "Cypress Cove" CPU cores. Also in 2H-2021, the company will launch its "Sapphire Rapids" enterprise processors that come with next-gen connectivity and updated CPU cores.
Intel 7 nanometer delay

Intel Reports Second-Quarter 2020 Financial Results

Intel Corporation today reported second-quarter 2020 financial results. "It was an excellent quarter, well above our expectations on the continued strong demand for computing performance to support cloud-delivered services, a work- and learn-at-home environment, and the build-out of 5G networks," said Bob Swan, Intel CEO. "In our increasingly digital world, Intel technology is essential to nearly every industry on this planet. We have an incredible opportunity to enrich lives and grow this company with a continued focus on innovation and execution."

Intel achieved record second-quarter revenue with 34 percent data-centric revenue growth and 7 percent PC-centric revenue growth YoY. These results were driven by strong sales of cloud, notebook, memory and 5G products in an environment where digital services and computing performance are essential to how we live, work and stay connected.

AMD Ryzen PRO 4750G, PRO 4650G, and PRO 4350G Tested

Taiwan-based tech publication CoolPC.com.tw published one of the first comprehensive performance reviews of the recently announced AMD Ryzen PRO 4750G, PRO 4650G, and PRO 4350G Socket AM4 desktop processors based on the 7 nm "Renoir" silicon that combines up to 8 "Zen 2" GPU cores with a Radeon Vega iGPU that has up to 8 compute units (512 stream processors). In their testing, the processors were paired with an AMD Wraith Prism (125 W TDP capable) cooler, an ASUS ROG Strix B550-I Gaming motherboard, 2x 8 GB ADATA Spectrix D50 DDR4-3600 memory, and a Seagate FireCuda NVMe SSD.

The benchmark results are a fascinating mix. The top-dog Ryzen 7 4750G was found to be trading blows with the Core i7-10700K, the i7-10700, and AMD's own Ryzen 7 3700X, depending on the benchmark. In CPUMark 99 and Cinebench R20 nT, the PRO 4750G beats the i7-10700 and 3700X while practically matching the i7-10700K. It beats the i7-10700K at 7-Zip (de-compression) and HWBOT x265 video encoding benchmark. The story repeats with the 6-core/12-thread PRO 4650G beating the Core i5-10600K in some tests, and AMD's own Ryzen 5 3600X in quite a few tests. Ditto with the quad-core PRO 4350G pasting the previous generation Ryzen 3 3300G.

MSI Announces Overclocking Records with Ryzen 4000G Processors

Since the AMD Ryzen 4000 Series Desktop Processors with PRO technologies have launched today, MSI 500-series motherboards are well-prepared to fully support for the new processors' coming. Compared to the Ryzen 3000 series CPUs, the AMD Ryzen PRO 4000 Series Processors are built in a monolithic design based on the 7 nm architecture for both Zen 2 CPU and Vega GPU, which improves greatly in latency and bandwidth numbers with better efficiency in performance. Of course, MSI 500-series motherboards including X570 and B550 platform are perfectly compatible for the Ryzen PRO 4000 Series Processors.

AMD Ryzen PRO 4000 Series Processors offer greater CPU and memory performance for overclockers and enthusiasts to push benchmark to another level. MSI has showcased not only the best performance for memory frequency but also the memory stability with Memtest pass.

AMD Announces Renoir for Desktop: Ryzen 4000G, PRO 4000G, and Athlon PRO 3000G

AMD today announced its 4th Generation Ryzen 4000G and Ryzen PRO 4000G desktop processors for pre-built OEM desktops. The company also expanded its entry-level Athlon 3000G series and debuted the Athlon PRO 3000G series. The Ryzen 4000G and PRO 4000G mark the Socket AM4 desktop debut of the 7 nm "Renoir" silicon, which combines up to 8 CPU cores based on the "Zen 2" microarchitecture, with a Radeon Vega 8 iGPU. These processors benefit from the 65 W TDP and increased power limits of the desktop platform to dial up CPU- and iGPU engine clock speeds significantly over the Ryzen 4000U and 4000H mobile processors based on the same silicon. The new Athlon 3000G-series and Athlon PRO 3000G-series parts are based on a 12 nm die that has "Zen+" CPU cores.

All of the processor models announced today are OEM-only, meaning that you'll only find them on pre-built consumer- and commercial desktops by the likes of HP, Lenovo, Dell, etc. Not even the system-integrator (SI) channel (eg: Maingear, Origin PC, etc.,) gets these chips. OEMs will pair these processors with motherboards based on the AMD B550 chipset, although the chips are compatible with the X570 chipset, too. The Ryzen PRO 4000G processors are targeted at commercial desktops that are part of large business environments, and launches along with the new AMD PRO565 chipset. Since they are OEM-only, the company did not reveal pricing for any of these chips. They did however mention that for the DIY retail channel, they do plan to update their product stack with processors that have integrated graphics at a later time (without going into specifics of the said time).

Samsung's 5 nm EUV Node Struggles with Yields

Semiconductor manufacturing is a difficult process. Often when a new node is being developed, there are new materials introduced that may cause some yield issues. Or perhaps with 7 nm and below nodes, they are quite difficult to manufacture due to their size, as the transistor can get damaged by the smallest impurity in silicon. So manufacturers have to be extra careful and must spend more time on the development of new nodes. According to industry sources over at DigiTimes, we have information that Samsung is struggling with its 5 nm EUV node.

This unfortunate news comes after the industry sources of DigiTimes reported that Qualcomm's next-generation 5G chipsets could be affected if Samsung doesn't improve its yields. While there are no specific pieces of information on what is the main cause of bad yields, there could be a plethora of reasons. From anything related to manufacturing equipment to silicon impurities. We don't know yet. We hope that Samsung can sort out these issues in time, so Qualcomm wouldn't need to reserve its orders at rival foundries and port the design to a new process.

AMD Ryzen 7 PRO 4750G Geekbenched, Gets Close to 3700X-level Performance

AMD's top upcoming Socket AM4 desktop APU, the Ryzen 7 PRO 4750G, was put through Geekbench 5, as discovered by TUM_APISAK. The processor produced performance figures in the league of the popular Ryzen 7 3700X desktop processor. Both are 8-core/16-thread processors based on the "Zen 2" microarchitecture, but while the 3700X has additional L3 cache and added power budget for the CPU cores (as the processor completely lacks an iGPU); the PRO 4750G offers a Radeon Vega 8 iGPU with its engine clock above 2.00 GHz. Both chips were compared on Geekbench 5.2.2.

The single-core performance of both the PRO 4750G and 3700X are similar, with the PRO 4750G scoring 1239 points, and the 3700X scoring 1266 points. The 3700X has a slight upper hand with multi-core performance, with 9151 points compared to 8228 points of the PRO 4750G. This is attributable to the 3700X enjoying four times the L3 cache size. The Ryzen 7 PRO 4750G is expected to be the top desktop SKU based on the 7 nm "Renoir" silicon that features eight "Zen 2" CPU cores, and an iGPU based on the "Vega" graphics architecture, featuring 8 NGCUs amounting to 512 stream processors. The processor features AMD PRO feature-set that make it fit for use in commercial desktops in large business environments.

TSMC to Manufacture Apple Silicon for Arm-Based Macs

Apple has recently announced its transition from Intel-based Mac computers to custom Arm-based Apple silicon equipped Macs. The speculations for such transition have lasted a few years and we finally got that confirmation. So the question remains: who will manufacture Apple's custom processors for Arm-based Macs? The answer is pretty simple. It is TSMC who will again become Apple's main supplier of silicon. With its broad offerings of the latest silicon nodes, it was no brainer choice for Apple. Combined with the history of collaboration with Apple, TSMC was the only choice for new Apple silicon. Whatever the company will use the new 5 nm node or use the "old" 7 nm one, the question remains.

TSMC expects to see huge orders from Apple in the second half of 2021, for Apple silicon, so Apple will become perhaps the biggest customer of TSMC. It is also worth pointing out that Apple will be using ASMedia's USB controller for Arm-based Macs, as the original report suggests.

AMD 64-core EPYC "Milan" Based on "Zen 3" Could Ship with 3.00 GHz Clocks

AMD's 3rd generation EPYC line of enterprise processors that leverage the "Zen 3" microarchitecture, could innovate in two directions - towards increasing performance by doing away with the CCX (compute complex) multi-core topology; and taking advantage of a newer/refined 7 nm-class node to increase clock-speeds. Igor's Lab decoded as many as three OPNs of the upcoming 3rd gen EPYC series, including a 64-core/128-thread part that ships with frequency of 3.00 GHz. The top 2nd gen EPYC 64-core part, the 7662, ships with 2.00 GHz base frequency and 3.30 GHz boost; and 225 W TDP. AMD is expected to unveil its "Zen 3" microarchitecture within 2020.

"Zen 3" is On Track and Launching Later This Year: AMD CEO

In a video message posted on her Twitter timeline, AMD CEO Dr Lisa Su confirmed that the company's next-generation "Zen 3" microarchitecture is coming out "later this year." Speaking in context of 7/7 (a year since AMD debuted high-performance CPU- and GPU- architectures on the same day, leveraging 7 nm), and the Ryzen 3000XT series processor announcement, Dr Su stated "As you know with Ryzen, we're always on a journey, a journey to push the highest performance that we can for our users and our fans. So Zen 3 is exactly that. Zen 3 is looking great in the labs, we're on track to launch later this year, and I can't wait to tell you more about it." Watch the video in the source link below.

Huawei Desktop PC with Kunpeng 920 Processor Teased and Tested

Huawei has been readying the entire new breed of desktop PCs with a custom motherboard, custom processor, and even a custom operating system. Being that Huawei plans to supply Chinese government institutions with these PCs, it is logical to break away from US-made technology due to security reasons. And now, thanks to the YouTube channel called "二斤自制" we have the first look at the new PC system. Powered by Huawei D920S10 desktop motherboard equipped with Kunpeng 920 7 nm Arm v8 processor with 8 cores, the PC was running the 64-bit UOS operating system, which is a Chinese modification of Linux. In the test, the PC was assembled by a third-party provider and it featured 16 GB of 2666 MHz DDR4 memory and 256 GB SSD.

The YouTube channel put it to test and in the Blender BMW render test, it has finished in 11 minutes and 47 seconds, which is quite slow. The system reportedly managed to stream 4K content well but has struggled with local playback thanks to poor encoding. Being that it runs a custom OS with a custom processor, app selection is quite narrow. The app store for the PC is accessible only if you pay an extra 800 Yuan (~$115), while the mentioned system will set you back 7,500 Yuan (~$1,060). At the heart of this system is eight-core, eight threaded Kunpeng 920 2249K processor. It features a clock speed of 2.6 GHz, has 128K of L1 cache (64K instruction cache and 64K data cache), 512K of L2, and 32 MB of L3 cache.

AMD Ryzen 7 4700GE Memory Benchmarked: Extremely Low Latency Explains Tiny L3 Caches

AMD's 7 nm "Renoir" APU silicon, which features eight "Zen 2" CPU cores, has only a quarter of the L3 cache of the 8-core "Zen 2" CCD used in "Matisse," "Rome," and "Castle Peak" processors, with each of its two quad-core compute complexes (CCXs) featuring just 4 MB of it (compared to 16 MB per CCX on the 8-core "Zen 2" CCD). Chinese-language tech publication TecLab pubished a quick review of an alleged Ryzen 7 4700GE socket AM4 processor based on the "Renoir" silicon, and discovered that the chip offers significantly lower memory latencies than "Matisse," posting just 47.6 ns latency when paired with DDR4-4233 dual-channel memory.

In comparison, a Ryzen 9 3900X with these kinds of memory clocks typically posts 60-70 ns latencies, owing to the MCM design of "Matisse," where the CPU cores and memory controllers sit on separate dies, which is one of the key reasons AMD is believed to have doubled the L3 cache amount per CCX compared to previous-generation "Zeppelin" dies. TecLab tested the alleged 4700GE engineering sample on a ROG Crosshair VIII Impact X570 motherboard that has 1 DIMM per channel (the best possible memory topology).

AMD "Renoir" Die Annotation Raises Hopes of Desktop Chips Featuring x16 PEG

VLSI engineer Fritzchens Fritz, famous for high-detail EM photography of silicon dies and annotations of them, recently published his work on AMD's 7 nm "Renoir" APU silicon. His die-shots were annotated by Nemez aka GPUsAreMagic. The floor-plan of the silicon shows that the CPU component finally dwarfs the iGPU component, thanks to double the CPU cores over the previous-gen "Picasso" silicon, spread over two CCXs (compute complexes). The CCX on "Renoir" is visibly smaller than the one on the "Zen 2" CCDs found in "Matisse" and "Rome" MCMs, as the L3 cache is smaller, at 4 MB compared to 16 MB. Being MCMs with disintegrated memory controllers, it makes more sense for CCDs to have more last-level cache per CCX.

We also see that the iGPU features no more than 8 "Vega" NGCUs, so there's no scope for "Renoir" based desktop APUs to feature >512 stream processors. AMD attempted to compensate for the NGCU deficit by dialing up engine clocks of the iGPU by over 40% compared to those on "Picasso." What caught our eye in the annotation is the PCI-Express physical layer. Apparently the die indeed has 20 PCI-Express lanes besides an additional 4 lanes that can be configured as two SATA 6 Gbps ports thanks to SerDes flexibility.

Possible NVIDIA GeForce RTX 3090, RTX 3080, and "TITAN Ampere" Specs Surface

Alleged specifications of NVIDIA's upcoming GeForce RTX 3090, RTX 3080, and next-generation TITAN graphics cards, based on the "Ampere" graphics architecture, surfaced in tweets by KatCorgi, mirroring an early-June kopite7kimi tweet, sources with a high hit-rate on NVIDIA rumors. All three SKUs will be based on the 7 nm "GA102" silicon, but with varying memory and core configurations, targeting three vastly different price-points. The RTX 3080 succeeds the current RTX 2080/Super, and allegedly features 4,352 CUDA cores. It features a 320-bit GDDR6X memory interface, with its memory ticking at 19 Gbps.

The RTX 3090 is heir-apparent to the RTX 2080 Ti, and is endowed with 5,248 CUDA cores, 12 GB of GDDR6X memory across a 384-bit wide memory bus clocked at 21 Gbps. The king of the hill is the TITAN Ampere, succeeding the TITAN RTX. It probably maxes out the GA102 ASIC with 5,326 CUDA cores, offers double the memory amount of the RTX 3090, at 24 GB, but at lower memory clock speeds of 17 Gbps. NVIDIA is expected to announce these cards in September, 2020.

AMD Radeon Pro 5600M with HBM2 Benchmarked

Benchmarks of the new Apple-exclusive AMD Radeon Pro 5600M graphics solution by Max Tech reveals that the new GPU is about 50% faster than the Radeon Pro 5500M, and within striking distance of the Radeon Pro Vega 48 found in Apple's 5K iMacs. The Pro 5600M is an Apple-exclusive solution by AMD, based on the "Navi 12" silicon that features a 7 nm GPU die based on the RDNA graphics architecture, flanked by two 4 GB HBM2 memory stacks over a 2048-bit interface. The GPU die features 2,560 stream processors, but clocked differently from Radeon Pro discrete graphics cards based on the "Navi 10" ASIC that uses conventional GDDR6.

The Radeon Pro 5600M solution was found to be 50.1 percent faster than the Radeon Pro 5500M in Geekbench 5 Metal (another Apple-exclusive SKU found in 16-inch MacBook Pros), and just 12.9 percent behind the Radeon Vega 48. The Vega 56 found in iMac Pro is still ahead. Unigine Heaven sees the Pro 5600M being 48.1% faster than the Pro 5500M, and interestingly, faster than Vega 48 by 11.3%. With 2,560 RDNA stream processors, you'd expect more performance, but this card was designed to meet stringent power limits of 50 W, and has significantly lower clock-speeds than "Navi 10" based Radeon Pro graphics cards (1035 MHz max boost engine clock vs. 1930 MHz and 205 W TDP of the Pro W5700). Find more interesting commentary in the Max Tech video presentation.

AMD Ryzen 5 4400G Desktop "Renoir" 6-core APU Put Through 3DMark11

It looks like AMD's Ryzen 4000G line of socket AM4 desktop APUs based on the 8-core 7 nm "Renoir" silicon will be a lot wider than just a couple of SKUs. We've seen plenty of material on the top Ryzen 7 4700G part that maxes out everything on the silicon, along with increased power limits and clock speeds. It looks like the Ryzen 5 4000G series will consist of 6-core/12-thread parts. One such chip, the Ryzen 5 4400G surfaced on the 3DMark database, as dug up by TUM_APISAK. They earlier brought you a 3DMark score comparison between the 4400G, the top 4700G, and the entry-level 4200G.

The Ryzen 5 4400G (possible OPN: 100-000000143) appears to be a 6-core/12-thread part based on "Renoir," with the CPU clocked at 3.70 GHz base and possibly 4.30 GHz boost. The "Vega" NGCU count of the iGPU is unknown, but its engine clock is set at 1.90 GHz (max). With the "P" (performance) preset, the 4400G allegedly scores 4395 points in the 3DMark 11 graphics test suite (graphics score); with 10241 points physics score.

TSMC Planning a 4nm Node that goes Live in 2023

TSMC is reportedly planning a stopgap between its 5 nm-class silicon fabrication nodes, and the 3 nm-class, called N4. According to the foundry's CEO, Liu Deyin, speaking at a shareholders meeting, N4 will be a 4 nm node, and an enhancement of N5P, the company's most advanced 5 nm-class node. N4 is slated for mass-production of contracted products in 2023, and could help TSMC's customers execute their product roadmaps of the time. From the looks of it, N4 is a repeat of the N6 story: a nodelet that's an enhancement of N7+, the company's most advanced 7 nm-class node that leverages EUV lithography.

AMD 5th Gen Ryzen Desktop Possibly Codenamed "Warhol"

Earlier this week, we brought you a report about codenames of AMD processors that won't launch before 2022. It referenced "Raphael" being distant 5 nm "Zen 4" based successor to today's "Matisse." At the time, the codename for the 2021 release of AMD's mainstream desktop processor wasn't known. We're now getting a pointer as to what it is - "Warhol."

Named after American artist and filmmaker Andy Warhol, this processor combines CPU chiplets based on the "Zen 3" with a cIOD that retains PCI-Express gen 4.0, just like "Vermeer," but still qualifies as a new generation (and not a refresh). What's more, "Warhol" apparently sticks to a 7 nm-class silicon fabrication process. This means that "Warhol" could see AMD innovate on other fronts, such as leveraging an even more advanced version of TSMC's 7 nm node (such as N7+), to increase core counts over the chiplet that makes it to "Vermeer, "Genesis Peak," and "Milan."

AMD RDNA2 "Navi 21" GPU to Double CU Count Over "Navi 10"

AMD's RDNA2 graphics architecture, which sees real-time ray-tracing among other DirectX 12 Ultimate features, could see the company double the amount of stream processors generation-over-generation, according to a specs leak by _rogame. The increase in stream processors would fall in line with AMD's effort to increase performance/Watt by 50%. It may appear like the resulting SKUs finally measure up to the likes of the RTX 2080 Ti, but AMD has GeForce "Ampere" in its competitive calculus, and should the recent specs reveal hold up, the new "Navi 21" could end up being a performance-segment competitor to GeForce graphics cards based on the "GA104" ("TU104" successor), rather than a flagship-killer.

The RDNA2-based "Navi 21" GPU allegedly features 80 RDNA2 compute units amounting to 5,120 stream processors. AMD might tap into a refined 7 nm-class silicon fabrication node by TSMC to build these chips, either N7P or N7+. The die-size could measure up to 505 mm², and AMD could aim for a 50% performance/Watt gain over the "Navi 10." AMD could carve out as many as 10 SKUs out of the "Navi 21," but only three are relevant to the gamers. The SKU with the PCI device ID "0x731F: D1" succeeds the RX 5700 XT. The one bearing "0x731F: D3" succeeds the RX 5700, with a variant name "Navi 21 XL." The "Navi 21 XE" variant has a PCI ID of "0x731F: DF," and succeeds the RX 5600 XT.
Return to Keyword Browsing
Mar 29th, 2025 00:15 EDT change timezone

New Forum Posts

Popular Reviews

Controversial News Posts