News Posts matching #Processor

Return to Keyword Browsing

Some AMD Processors Have a Hardware RNG Bug, Losing Randomness After Suspend Resume

Red Hat Systemd (system and service manager) lead developer Lennart Poettering discovered that AMD A6-6310 "Beema" SoC that's popular among low-cost notebooks, has a faulty implementation of the RdRand random-number generation instruction. The processor's hardware random number generator (RNG) loses "randomness" after the machine resumes from a suspended state (i.e. waking up the notebook from sleep by opening its lid while it's powered on). Modern computers rely on RNGs for "entropy," critical to generation of unpredictable keys on the fly for SSL. However, the entropy source needn't be hardware, and isn't so by default. Software RNGs exist, and by default the Linux kernel does not use RdRand to generate entropy. Windows is not known to use RdRand for basic ACPI functions such as suspend/resume; however a faulty hardware RNG is not without implications for the platform, and applications that run on it.

Users on GitHub and Bugzilla report that with this bug, you cannot make a machine suspend a second time after waking it up from a suspended state, if your kernel uses RdRand. Commit cc83d51 to Systemd introduced optional randomness generation based on RdRand instruction. So, if RdRand instruction is present, it is used to generate UUIDs for invocation IDs. Michael Larabel of Phoronix comments that the RdRand bug is only found on older generations of AMD processors, "Excavator" and older; and does not affect the latest "Zen" processors. This bug report chronicles what's wrong with RdRand on the affected processors, as does this Linux kernel bugzilla thread. By avoiding RdRand usage on the system as part of generating a UUID, the reported systemd issue no longer happens. Red Hat is working on a solution to this bug.

Intel, AMD, and HTC Partner to Resolve Vive Wireless Adapter Compatibility Issue with Ryzen Processors

The headline of this post makes it seem a touch more innocuous than the story may lead to, at least if you believe the rumor mills abound. There has been an ongoing issue with AMD systems using Ryzen CPUs and the HTC Vive wireless adapter (powered by Intel WiGig) to where the systems have frozen or even had a BSOD. HTC acknowledged this as early as Nov, 2018, noting that they have seen this with a subset of Ryzen-based motherboards when the PCIe wireless adapter is installed and running. It took until last week to get a solution of sorts, and unfortunately reports from users indicate this is not a true fix for everyone.

The hotfix update 1.20190410.0 was made available April 25 to attempt to combat this issue, which was garnering a lot of attention in the VR-community on whether there was more Intel could be doing to help AMD customers. This hotfix update is available automatically once an end user with the Vive wireless adapter checks for an update, and HTC acknowledge that they continue to test this, as well as partner with Intel and AMD to help resolve this once and for all. In the meantime, users report mixed success to date, including some we know personally as well, and it remains a thorn in the side of wireless VR to get to the PC successfully.

AMD Announces the Ryzen Embedded R1000 SoC Series

At the Taiwan Embedded Forum, AMD announced the Ryzen embedded product family is growing with the new AMD Ryzen Embedded R1000 SoC. Building upon the success of the Ryzen Embedded V1000 SoC, the AMD Ryzen Embedded R1000 SoC provides embedded customers with dual core, quad-threaded performance, as well as the ability to run fanless, low power solutions for 4K displays; while providing leading-edge security features. The AMD Ryzen Embedded R1000 is perfect for applications in digital displays, high-performance edge computing, networking, thin clients and more.

Customers like Advantech, ASRock Industrial, IBASE, Netronome, Quixant and others are already working on Ryzen Embedded R1000-based products. As well, Atari© is using the high-performance Vega 3 graphics and 'Zen' CPU architecture in the AMD Ryzen Embedded R1000 SoC to power the upcoming Atari VCS game system.

BIOSTAR Intel 300 Series Motherboards Ready for the New Stepping of 9th Generation Intel Core Processors

BIOSTAR today announced that their entire 300 series motherboards have a BIOS update available that brings immediate, drop-in compatibility with Intel's new 9th generation processors. What kind of update this new stepping (which updates the old P0 stepping to the new R0) brings is unclear - Intel hasn't officially said what this change introduces at the silicon level. TDP fixes, clock increases, fixing mere errata in the CPU ID, or even some other silicon-level changes - these are all fair game for such a nebulous release. Look after the break for the entire list of updated BIOSTAR motherboards.

Intel Unleashes 56-core Xeon "Cascade Lake" Processor to Preempt 64-core EPYC

Intel late Tuesday made a boat-load of enterprise-relevant product announcements, including the all important update to its Xeon Scalable enterprise processor product-stack, with the addition of the new 56-core Xeon Scalable "Cascade Lake" processor. This chip is believed to be Intel's first response to the upcoming AMD 7 nm EPYC "Rome" processor with 64 cores and a monolithic memory interface. The 56-core "Cascade Lake" is a multi-chip module (MCM) of two 28-core dies, each with a 6-channel DDR4 memory interface, totaling 12-channel for the package. Each of the two 28-core dies are built on the existing 14 nm++ silicon fabrication process, and the IPC of each of the 56 cores are largely unchanged since "Skylake." Intel however, has added several HPC and AI-relevant instruction-sets.

To begin with, Intel introduced DL Boost, which could be a fixed-function hardware matrix multiplier that accelerates building and training of AI deep-learning neural networks. Next up, are hardware mitigation against several speculative execution CPU security vulnerabilities that haunted the computing world since early-2018, including certain variants of "Spectre" and "Meltdown." A hardware fix presents lesser performance impact compared to a software fix in the form of a firmware patch. Intel has added support for Optane Persistent Memory, which is the company's grand vision for what succeeds volatile primary memory such as DRAM. Currently slower than DRAM but faster than SSDs, Optane Persistent Memory is non-volatile, and its contents can be made to survive power-outages. This allows sysadmins to power-down entire servers to scale down with workloads, without worrying about long wait times to restore uptime when waking up those servers. Among the CPU instruction-sets added include AVX-512 and AES-NI.

ASRock DeskMini 310 supports Intel 9th Gen Processors

The world leading motherboard and mini PC manufacturer - ASRock, announces DeskMini 310 supports Intel the latest 9th Generation Core series 65-watt LGA1151 processors. ASRock DeskMini 310 adopts with Intel H310 chipset, supports up to 32GB DDR4-2666MHz memory, dual 2.5-inch hard drive and one M.2 (2280) PCIe Gen3 x4 NVMe SSD. ASRock provides various optional accessories of DeskMini 310, includes USB 2.0 cable, VESA mount kit, and Wi-Fi ac kit. With comprehensive accessories, DeskMini 310 can satisfy diverse demands from all users.

AMD Kicks-Off 2019 Offering Complete Mobile Portfolio with Ryzen, Athlon, and A-Series Processors for Notebooks and Chromebooks

Today, AMD announced the first members of its 2019 mobility line-up encompassing all notebook segments: 2nd Gen AMD Ryzen 3000 Series Mobile Processors powering ultrathin and gaming notebooks; AMD Athlon 300 Series Mobile Processors powering mainstream notebooks with the fast and efficient "Zen"3 core; and optimized 7th Gen AMD A-Series processors, elevating performance for mainstream Chromebooks. In addition, AMD announced that starting this quarter, gamers, creators and enthusiasts will be able to install Radeon Software Adrenalin software to bring the latest GPU features and game optimizations to all systems powered by AMD Ryzen Processors with Radeon Graphics.

"Users expect mobile PCs that excel at both everyday tasks and compute-heavy experiences, and with our latest mobile processor portfolio AMD offers exactly that across all levels of the market," said Saeid Moshkelani, senior vice president and general manager, Client Compute, AMD. "Notebook users want to experience the latest modern features while streaming, gaming, or finishing work faster. Enabling breakthrough entertainment experiences, AMD is pleased to enable a wide range of AMD powered notebooks than ever that deliver on those expectations with blazing fast performance, rich graphics, and long battery life."

Stuttgart-based HLRS to Build a Supercomputer with 10,000 64-core Zen 2 Processors

Höchstleistungsrechenzentrum (HLRS, or High-Performance Computing Center), based in Stuttgart Germany, is building a new cluster supercomputer powered by 10,000 AMD Zen 2 "Rome" 64-core processors, making up 640,000 cores. Called "Hawk," the supercomputer will be HLRS' flagship product, and will open its doors to business in 2019. The slide-deck for Hawk makes a fascinating disclosure about the processors it's based on.

Apparently, each of the 64-core "Rome" EPYC processors has a guaranteed clock-speed of 2.35 GHz. This would mean at maximum load (with all cores loaded 100%), the processor can manage to run at 2.35 GHz. This is important, because the supercomputer's advertised throughput is calculated on this basis, and clients draw up SLAs on throughput. The advertised peak throughput for the whole system is 24.06 petaFLOP/s, although the company is yet to put out nominal/guaranteed performance numbers (which it will only after first-hand testing). The system features 665 TB of RAM, and 26,000 TB of storage.

AMD Zen 2 GNU Compiler Patch Published, Exposes New Instruction Sets

With a November deadline for feature freeze fast approaching, GNU toolchain developers are now adding the last feature additions to GCC 9.0 (GNU Compiler Collection). Ahead of that deadline, AMD has released their first basic patch adding the "znver2" target and therefore Zen 2 support to GCC. While the patch uses the same cost tables and scheduler data as Znver1, it does feature three new instructions that will be available to AMD's next-gen CPUs which include; Cache Line Write Back (CLWB), Read Processor ID (RDPID), and Write Back and Do Not Invalidate Cache (WBNOINVD).

These three instructions are the only ones that have been found thus far by digging through the current code. Taking into account this is the first patch it can be considered a jumping off point, making sure that the GCC 9.1 stable update, which comes out in 2019, has support for Zen 2. Further optimizations and instructions may be implemented in the future. This is likely since AMD has yet to update the scheduler cost tables and by extension means they may not want to reveal everything about Zen 2 just yet. You could say AMD is for now playing it safe, at least until their 7nm EPYC 2 processors launch in 2019.

Intel Officially Launches 9th Generation Processors Including the 8-Core / 16-Thread Core i9-9900K

Anand Srivatsa, Vice President of Intel, officially announced their all-new 9th generation of core processors in today's live stream. While the Coffee Lake refresh has certainly been no secret, a few facts were confirmed today. The Core i9-9900k will be Intel's first broad volume 5 GHz processor and is their first mainstream 8 core, 16 thread offering. In order to facilitate better overclocking results for enthusiasts, the company also confirmed that they will use solder TIM for the whole range of products, which should result in not only better overclocking potential but much lower thermals as well.

Intel CFO and Interim CEO Writes an Open Letter on Processor Supply

Growing anger among PC manufacturers, retailers, and consumers in general, over supply issues with Intel processors, compounded with rising prices, and prompted Bob Swan, CFO and Interim-CEO of Intel, to write an open-letter, addressed to customers and partners, which counts you, since we received it in our main news channel from Intel. The language in the e-mail is straightforward and we wouldn't want to interpret it further than Intel grappling with a combination of massive demand from both its cloud-computing customers, and PC manufacturers hit by a surge of customers upgrading their machines (probably because it took Intel 10 years to increase CPU core counts, giving people a reason to upgrade).

To mitigate this, Intel is firing up all its manufacturing assets, across Oregon, Arizona, Ireland and Israel, in addition to its main foundries, by pumping in an additional $1 billion in capital expenditure (which is now at $15 billion). The letter doesn't miss out mentioning 10 nm, that the company is making progress with yields, and that volume production should roll out in 2019 (without offering guidance as to when). Intel also reassured PC OEMs that their supply teams will be in closer contact with them over the coming weeks. Without further ado, the open-letter follows verbatim.
The letter follows.

More Clarity on 9th Gen Core Processor Pricing Emerges

Intel is debuting its first wave of 9th generation Core desktop processors with three models later this year - the 6-core/6-thread Core i5-9600K, the 8-core/8-thread Core i7-9700K, and the 8-core/16-thread Core i9-9900K. We've been very curious about how the entry of the Core i9 extension to the mainstream-desktop LGA1151 platform would affect pricing of the Core i5 and Core i7 K-series SKUs, especially given that the i7-9700K is the first Core i7 SKU in a decade to lack HyperThreading. An updated catalog by a major Singapore-based PC components distributor adds more clarity.

Singapore-based PC component distributor BizGram, in its latest catalog, disclosed the all-inclusive retail prices of the three new processors. As Redditor Dylan522p suggests, if you do the SGD-USD conversion and subtract all taxes, you get ominous-looking SEP prices for the three. Intel could price the Core i5-9600K at USD $249.99. The Core i7-9700K could be priced at $349.99. The flagship Core i9-9900K could go for $449.99. These seem like highly plausible pre-tax launch prices for the three chips, and fit into the competitive landscape.

AMD Announces "Zen" Based Athlon and 2nd Gen Ryzen PRO Desktop Processors

AMD today announced a reimagined family of AMD Athlon desktop processors with Radeon Vega graphics that have been optimized for everyday PC users: the AMD Athlon 200GE, Athlon 220GE, and Athlon 240GE processor. Combining the high-performance x86 "Zen" core and "Vega] graphics architectures in a versatile System-on-Chip (SOC) design, the Athlon desktop processors offer responsive and reliable computing for a wide range of experiences, from day-to-day needs like web browsing and video streaming through more advanced workloads like high-definition PC gaming. Complementing this news, AMD announced the availability of the commercial-grade Athlon PRO 200GE desktop processor, along with three 2nd Gen Ryzen PRO desktop processor models for the commercial, enterprise, and the public sector: the Ryzen 7 PRO 2700X, Ryzen 7 PRO 2700, and Ryzen 5 PRO 2600 processors. With these new introductions, AMD now offers a top-to-bottom line-up of professional-grade computing solutions for experiences that range from premium content creation to advanced multitasking and office productivity.

"We are proud to expand our successful "Zen" core-based consumer and commercial product portfolios today with the addition of AMD Athlon, AMD Athlon PRO, and 2nd Gen AMD Ryzen PRO desktop processors. The new Athlon desktop processors, now incorporating the advanced "Zen" core and "Vega"3 graphics architectures, energize a legendary processor brand in AMD Athlon - a brand that consumers and PC enthusiasts alike trusted throughout nearly two decades of innovation," said Saeid Moshkelani, senior vice president and general manager, Client Compute, AMD. "Additionally, we are continuing to offer business PC users more processing power than we ever have before with the launch of 2nd Gen Ryzen PRO desktop processors into the commercial market."

Intel 14nm Processors Face Shortages

Intel's 8th generation Core desktop processors based on the company's 14 nm node are facing shortages in the market, according to a Tom's Hardware report. Tracking prices and availability of popular 8th generation Core SKUs such as the i5-8400, i5-8600K, and i7-8700K, the report notes that retailers are heavily marking up these SKUs above their SEP, and many of whom are running out of stock often. This may not be attributed to heavy demand.

A possible explanation for these shortages could be Intel allocating volumes from the same 14 nm++ node for its upcoming 9th generation Core processors, which debut with three SKUs - i5-9600K, i7-9700K, and i9-9900K. Intel probably wants to launch the three chips not just at competitive prices, but also good enough volumes to win the 2018 Holiday season, and repair its competitiveness damaged by AMD 2nd generation Ryzen over the past couple of quarters.

AMD Launches World's Most Powerful Desktop Processor: 2nd Generation Threadripper

AMD today announced the availability of world's most powerful desktop processor, the 2nd Gen AMD Ryzen Threadripper 2990WX processor with 32 cores and 64 threads. Designed to power the ultimate computing experiences, 2nd Gen AMD Ryzen Threadripper processors are built using 12 nm "Zen+" x86 processor architecture and offer the most threads on any desktop processor with the flagship model delivering up to 53% greater performance than the competition's flagship model. Second Gen AMD Ryzen Threadripper processors support the most I/O, and are compatible with existing AMD X399 chipset motherboards via a simple BIOS update, offering builders a broad choice for designing the ultimate high-end desktop or workstation PC.

"We created Ryzen Threadripper processors because we saw an opportunity to deliver unheard-of levels of multithreaded computing for the demanding needs of creators, gamers, and PC enthusiasts in the HEDT market," said Jim Anderson, senior vice president and general manager, Computing and Graphics Business Group, AMD. "With the 2nd Gen processor family we took that challenge to a whole new level - delivering the biggest, most powerful desktop processor the world has ever seen."

Intel Leak Confirms Ten New Entry Level Coffee Lake Xeon Processors

Latest leak confirms that Intel is preparing new Xeon processors targeted at the entry level market. These Xeon chips, which are based on Coffee Lake-S, have been rebranded from Xeon E3 to Xeon E. The Xeon E-2000 family consists of ten models featuring up to six cores. They differ from their consumer Coffee Lake counterparts in terms of features, memory support, operating frequencies, and TDP ratings. Seven of the ten processors come with iGPUs as denoted by the G suffix in the model number. The new Xeon E-2000 processors will be manufactured in Intel's Vietnam facility. The first batches of these processors are expected to ship sometime around June 25, 2018.

Possible Intel 8-core LGA115x Processor Surfaces on SANDRA Database

That Intel bringing 8 cores to the mainstream-desktop (MSDT) platform is more than a rumor now, as a curious-looking SiSoft SANDRA database entry suggests. An anonymous source submitted benchmark results of a processor with 8 cores, 16 threads, 256 KB of L2 cache per core, and 16 MB of L3 cache; clocked at 2.60 GHz (prototypes and engineering-samples are usually clocked low). This can't be i7-5960X or the i7-6900K, because the HEDT chips pack 20 MB of L3 cache. The more recent i7-7820X packs 11 MB of L3 cache, with 1 MB per core of L2 cache. It's conceivable that an MSDT chip could retain the cache hierarchy of the current MSDT processors from Intel, with 2 MB L3 cache slices per core, adding up to 12 MB on the i7-8700, for example, explaining the large 16 MB L3 cache on this chip.

The SANDRA numbers suggest similar IPC to the "Coffee Lake" architecture, while a proportionate increase in performance to the increased core-count. The chip scored 96 points with 237.03 GOPS score; 330.64 GIPS Dhrystone integer, 194.46 GFLOPS Whetstone single-precision floating-point; and 148.47 GFLOPS Whetstone double-precision; and 91.45 GOPS/GHz clocks/performance. Intel is rumored to launch an 8-core/16-thread LGA115x processor, possibly paired with its upcoming Z390 Express chipset, and possibly based on its new 10 nm silicon fabrication process; sometime either in 2H-2018 or Q1-2019.

Pro Overclocker der8auer Delids the AMD Ryzen 5 2600 Processor

In his latest Youtube video, famous overclocker der8auer has delidded his AMD Ryzen 5 2600 processor for the sole purpose of evaluating whether the benefits justify the risk. Since the IHS in the new Pinnacle Ridge processors is soldered directly to the die with Indium, delidding the processors is a tricky but not impossible task. Everything melts when it gets warm enough, and indium starts melting around 156.60 °C. Therefore, der8auer had to use a modified version of his popular Delid Die Mate 2 tool by replacing the acrylic pieces with aluminum while also removing the rubber washer. After baking his Ryzen 5 2600 chip in the oven between 170 °C to 180 °C, Der8auer removed the IHS easily with his delidding tool. For his testing, he replaced the indium solder with Thermal Grizzly liquid metal thermal compound. As expected, the results weren't very impressive. With the Ryzen 5 2600 overclocked to 4.1 GHz with 1.35V, the difference was a mere 4 °C under load. So, there you have it. Don't delid your Pinnacle Ridge processor. It's not worth the effort.

Six First-Generation AMD Ryzen Processor Models Reach EOL

With the April 19 introduction of four new second-generation Ryzen "Pinnacle Ridge" desktop processor SKUs, namely the 2700X, 2700, 2600X, and 2600; AMD is retiring six first-generation "Summit Ridge" SKUs from its lineup, according to a Guru3D report. Six SKUs have been marked EOL (end of life), meaning retailers can no longer order them from AMD. They can sell their remaining inventory, and AMD will honor full product warranties and aftersales support, to end users.

Among the retired SKUs are the previous-generation flagship Ryzen 7 1800X, 1700X, and 1700 (non-X); Ryzen 5 1600X, 1400, and the Ryzen 3 1200. As revealed in its product stack slide, the 2700X currently replaces both the 1800X and 1700X as the "8-core high performance" SKU, followed by the 2700 as the "8-core high efficiency" SKU, which replaces the 1700. The 2600X and 2600 succeed the 1600X and 1600, respectively. The Ryzen 5 1400 finds itself replaced by the GPU-equipped Ryzen 5 2400G "Raven Ridge" APU, and the entry-level Ryzen 3 1200 by the sub-$100 Ryzen 3 2200G. The table below reveals the updates prices of first-generation SKUs still in the product stack.

New "BranchScope" Side-channel CPU Vulnerability Threatens Modern Processors

In the age of cyber-security vulnerabilities being named by their discoverers, much like incoming tropical storms, the latest, which exploits speculative execution of modern processors, is named "BranchScope," discovered by academics from four US universities, Dmitry Evtyushkin, Ryan Riley, Nael Abu-Ghazaleh, and Dmitry Ponomarev. The vulnerability has been successfully tested on Intel "Sandy Bridge," "Haswell," and "Skylake" micro-architectures, and remains to be tested on AMD processors. It bears similarities to "Spectre" variant 2, in that it is an exploit of the branch prediction features of modern CPUs.

BranchScope differs from Spectre variant 2, in that while the latter exploits the branch target buffer, BranchScope goes after the directional branch predictor, a component that decides which speculative operations to execute. By misdirecting it, attackers can make the CPU read and spit out data from the memory previously inaccessible. The worst part? You don't need administrative privileges to run the exploit, it can be run from the user-space. Unlike CTS-Labs, the people behind the BranchScope discovery appear to have alerted hardware manufacturers significantly in advance, before publishing their paper (all of it, including technicals). They will present their work at the 23rd ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS 2018), later today.

Initial AMD Technical Assessment of CTS Labs Research

On March 12, 2018, AMD received a communication from CTS Labs regarding research into security vulnerabilities involving some AMD products. Less than 24 hours later, the research firm went public with its findings. Security and protecting users' data is of the utmost importance to us at AMD and we have worked rapidly to assess this security research and develop mitigation plans where needed. This is our first public update on this research, and will cover both our technical assessment of the issues as well as planned mitigation actions.

The security issues identified by the third-party researchers are not related to the AMD "Zen" CPU architecture or the Google Project Zero exploits made public Jan. 3, 2018. Instead, these issues are associated with the firmware managing the embedded security control processor in some of our products (AMD Secure Processor) and the chipset used in some socket AM4 and socket TR4 desktop platforms supporting AMD processors.

AMD Provides Support for BIOS Update on 2nd Gen Ryzen - Boot Kit Available

The Socket AM4 platform is designed to be a long life, fully featured, scalable solution with support for multiple processors, with varying capabilities. Since the release of the AMD Socket AM4 motherboards in early 2017 with the AMD Ryzen desktop processor, there have been several BIOS updates made available through our motherboard partners. These updates not only provide improved system performance but also expand support for newer processors as they become available.

In February 2018, AMD began introduction of the new 2nd Gen Ryzen Desktop Processor with Radeon Vega Graphics. To enable support for this new processor, an updated BIOS is required. Due to the rapid pace of innovation, and strong demand for Ryzen Processors with Radeon Graphics, it may be possible that some users with an AMD Socket AM4 motherboard paired with a 2nd Generation Ryzen Desktop introduced in 2018, may experience an issue where the system does not boot up during initial setup.

VAIO Introduces the New VAIO S with VAIO TruePerformance and 8th Gen Core

As part of its continued support for the business user, today VAIO Corporation has introduced a new line of the VAIO S laptops equipped with the 8th Generation Intel Core Processor and VAIO TruePerformance, a technology designed to maintain higher performance for a longer period of time by increasing CPU power limits and more efficiently eliminating processor heat.

By applying VAIO TruePerformance, the 8th Generation Intel Core Processor demonstrates higher performance for both the CPU and graphics over the usual 8th Generation Core i7 Processor. In addition, the Core i5 Processor with VAIO TruePerformance has the effect of achieving higher performance than the usual 8th Generation Core i7 Processor.

Intel Processors to Have "In-silicon" Fixes to Meltdown and Spectre This Year

Intel, which benefited from the post-Q4 public-disclosure of Meltdown and Spectre vulnerabilities in its latest results, is hoping to mitigate its fallout on Q1-2018. The company, along with several other CPU designers, such as AMD and ARM, are firefighting the two devastating security vulnerabilities through OS kernel patches and CPU micro-code updates; which come at a slight expense of performance. In a bid to unnerve investors, company CEO Brian Krzanich announced that Intel is working on "in-silicon" fixes to Meltdown and Spectre.

An "in-silicon" fix would entail a major CPU micro-architecture design that's inherently immune to the two vulnerabilities and yet offers the benefits of modern branch-prediction and speculative execution. Krzanich says processors with in-silicon fixes to the two vulnerabilities will be released to market by the end of 2018.

AMD Confirms They are Affected by Spectre, too

The public disclosure on January 3rd that multiple research teams had discovered security issues related to how modern microprocessors handle speculative execution has brought to the forefront the constant vigilance needed to protect and secure data. These threats seek to circumvent the microprocessor architecture controls that preserve secure data.

At AMD, security is our top priority and we are continually working to ensure the safety of our users as new risks arise. As a part of that vigilance, I wanted to update the community on our actions to address the situation.
Return to Keyword Browsing
Nov 21st, 2024 09:42 EST change timezone

New Forum Posts

Popular Reviews

Controversial News Posts