Friday, April 5th 2019
TSMC Completes 5 nm Design Infrastructure, Paving the Way for Silicon Advancement
TSMC announced they've completed the infrastructure design for the 5 nm process, which is the next step in silicon evolution when it comes to density and performance. TSMC's 5 nm process will leverage the company's second implementation of EUV (Extreme Ultra Violet) technology (after it's integrated in their 7 nm process first), allowing for improved yields and performance benefits.
According to TSMC, the 5 nm process will enable up to 1.8x the logic density of their 7 nm process, a 15% clock speed gain due to process improvements alone on an example Arm Cortex-A72 core, as well as SRAM and analog circuit area reduction, which means higher number of chips per wafer. The process is being geared for mobile, internet, and high performance computing applications. TSMC also provides online tools for silicon design flow scenarios that are optimized for their 5 nm process. Risk production is already ongoing.
Source:
TSMC
According to TSMC, the 5 nm process will enable up to 1.8x the logic density of their 7 nm process, a 15% clock speed gain due to process improvements alone on an example Arm Cortex-A72 core, as well as SRAM and analog circuit area reduction, which means higher number of chips per wafer. The process is being geared for mobile, internet, and high performance computing applications. TSMC also provides online tools for silicon design flow scenarios that are optimized for their 5 nm process. Risk production is already ongoing.
52 Comments on TSMC Completes 5 nm Design Infrastructure, Paving the Way for Silicon Advancement
Ryzen 4xxx series will be 5nm node for sure, holy crap this is great news.
Only means one thing to the believers.
IPC will probably be dead though.
That's a marketing name of the process. Actual sizes proposed for TSMC's 5nmprocess is 44nm for transistor gate pitch and 32nm for the interconnect. This is nowhere the sizes where quantum mechanics start getting in the way.
Intel is also working on 7nm (to compete with TSMC 5nm) - it might just be that they'll be first to deliver.
Don't worry too much. Hardly possible if 4xxx series was to be launched next year.
Also, don't unify TSMC and AMD. TSMC is just a supplier - they sell to the highest bidder. If Intel decides to become a TSMC client, there will be no supply left for AMD. ;-)
Well... that's unless TSMC decides to buy AMD... Before we get maxed out on 5nm, almost all computing activities will be moved to cloud - gaming included (at least for the people that can accept the idea).
And you'll be looking like a dinosaur with your ever-growing chiplet CPU. :-)
Pretty sure TSMC is gonna beat 7nm Intel to the market.
Never gonna happen, there's this thing called pride & hubris which Intel's full of. They derided ARM/big little, AMD/glue et al & look where they are now - copying their competition!
I'm not sure what's that supposed to mean :wtf:
GPUs and ARM were few years behind on tech, because they didn't need to be on the edge. They kept using well known, cheaper fab node that has been around for longer.
ARM: because no one knew how to use its potential.
GPUs: because they were used for gaming and no one cared. I mean: we had some GPUs that gave us some fps in some games. No benchmark. We really didn't know if that's the limit of this tech.
But then Nvidia started improving performance by 20% yearly. With CPUs we're getting ~5% yearly because of tech limits. This means gaming GPUs were many years behind. Maybe they will, maybe they won't. It's not that important. Intel is making their own CPUs, so they aren't competing with TSMC.
Intel did make a 10nm product as a showcase (a tiny CPU for laptops) before TSMC launched 7nm. They have the tech. It just wasn't profitable. I don't see this "copying". MCM is a very old idea, which both Intel and AMD (among many other companies) utilized over the years.
Now, what Intel does in marketing (calling competition's product "glued") is something totally separate from what they do in engineering. It's better to make marketing mistakes and good products than other way around.
And MCM is a huge compromise - something that should be seen as the last resort. So yes, Intel tries to avoid it at all cost, but at this moment they didn't manage to compete with EPYC without it. When they move to smaller node with good yield, maybe MCM won't be needed anymore. I'm not sure what you meant here (you gave few answers but haven't partitioned my post). The cloud part? I meant exactly what I is written there.
Computing will be covered by cloud in 5 years tops. By "covered" I mean: you won't need a high performing PC at all, for any task.
Today you still need to do some things locally - gaming being the obvious example. But I'm sure you've noticed we're getting awfully close.
And of course cloud will always be priced to compete with intermittent hardware use. So if you game for 2-3h a week, cloud should be cheaper. But if you run a computing node 24/7, hardware will remain the cheaper option.
I can bet it will use 1nm chips ;-)
TSMC's 12nm (refined 16nm) that it's supplying for turing works almost as good as 7nm on R7.You can see R7 clocks pretty badly given how vega liquid could do 1700mhz stock on 14nm and R7 needs water cooling capable of almost 500W to reach 2100mhz, that 2080Ti comes close to doing on air on refined 16nm.
process number is not the whole story.
It's not just copying, Intel prides itself as a leader in all sorts of stuff but frankly outside x86 & to an extent fabs, they aren't even second best in most other categories! Some of the major innovation in x86 space in the last 2 decades have in fact come from AMD - x64, IMC, APU (concept?) besides HBM, chiplets. The last 2 aren't limited to CPU but just to count a few things which tiny AMD has scored over Intel. In the meantime chipzilla spent billions on Itanic, P4, Larabee, Atom (in mobile space) just to name a few. The amount of time & money spent in promoting most of these products is staggering, in some cases they bribed, threatened even contra revenued the competition. Intel is a lot of things but the one thing they're not is a (tech) leader that you'd look upto.
Cloud will never replace local computing, not unless Google, MS, Amazon start subsidizing their cloud.
full vega die (64 cu) at 1670mhz with 345w tdp
not a game changer.