News Posts matching #Silicon

Return to Keyword Browsing

NVIDIA to Consume 77% of Silicon Wafers Dedicated to AI Accelerators in 2025

Investment bank Morgan Stanley has estimated that an astonishing 77% of all globally produced silicon wafers dedicated to AI accelerators will be consumed by none other than NVIDIA. Often, investment research by large investment banks like Morgan Stanley includes information from the semiconductor supply chain, which is constantly expanding to meet NVIDIA's demands. When looking at wafer volume for AI accelerators, it is estimated that in 2024, NVIDIA captured nearly 51% of wafer consumption for its chips, more than half of all demand. With NVIDIA's volume projected to grow to 77%, this represents more than a 50% year-over-year increase, which is incredible for a company of NVIDIA's size. Right now, NVIDIA is phasing out its H100 accelerators in favor of Blackwell 100/200 and the upcoming 300 series of GPUs paired with Grace CPUs.

NVIDIA is accelerating its product deployment timeline and investing a lot in its internal research and development. Morgan Stanley also projects that NVIDIA will invest almost $16 billion in its R&D budget, enough to endure four to five years of development cycles running three design teams sequentially and still delivering new products on an 18-24 month cadence. The scale of this efficiency and development rivals everyone else in the industry. With all this praise, NVIDIA's Q4 revenue report is coming in exactly a week on February 26, so we have to see what its CEO, Jensen Huang, will deliver and show some estimates for the coming months.

Huawei Delivers Record $118 Billion Revenue with 22% Yearly Growth Despite US Sanctions

Huawei Technologies reported a robust 22% year-over-year revenue increase for 2024, reaching 860 billion yuan ($118.27 billion), demonstrating remarkable resilience amid continued US-imposed trade restrictions. The Chinese tech giant's resurgence was primarily driven by its revitalized smartphone division, which captured 16% of China's domestic market share, overtaking Apple in regional sales. This achievement was notably accomplished by deploying domestically produced chipsets, marking a significant milestone for the company. In collaboration with Chinese SMIC, Huawei delivers in-house silicon solutions to integrate with HarmonyOS for complete vertical integration. The company's strategic diversification into automotive technology has emerged as a crucial growth vector, with its smart car solutions unit delivering autonomous driving software and specialized chips to Chinese EV manufacturers.

In parallel, Huawei's Ascend AI 910B/C platform recently announced compatibility with DeepSeek's R1 large language model and announced availability on Chinese AI cloud providers like SiliconFlow. Through a strategic partnership with AI infrastructure startup SiliconFlow, Huawei is enhancing its Ascend cloud service capabilities, further strengthening its competitive position in the global AI hardware market despite ongoing international trade challenges. Even if the company can't compete on performance versus the latest solutions from NVIDIA and AMD due to the lack of advanced manufacturing required for AI accelerators, it can compete on costs and deliver solutions that are typically much more competitive with the price/performance ratio. Huawei's Ascend AI solutions deliver modest performance. Still, the pricing makes AI model inference very cheap, with API costs of around one Yaun per million input tokens and four Yuan per one million output tokens on DeepSeek R1.

Osaka Scientists Unveil 'Living' Electrodes That Can Enhance Silicon Devices

Shrinking components was (and still is) the main way to boost the speed of all electronic devices; however, as devices get tinier, making them becomes trickier. A group of scientists from SANKEN (The Institute of Scientific and Industrial Research), at Osaka University has discovered another method to enhance performance: putting a special metal layer known as a metamaterial on top of a silicon base to make electrons move faster. This approach shows promise, but the tricky part is managing the metamaterial's structure so it can adapt to real-world needs.

To address this, the team looked into vanadium dioxide (VO₂). When heated, VO₂ changes from non-conductive to metallic, allowing it to carry electric charge like small adjustable electrodes. The researchers used this effect to create 'living' microelectrodes, which made silicon photodetectors better at spotting terahertz light. "We made a terahertz photodetector with VO₂ as a metamaterial. Using a precise method, we created a high-quality VO₂ layer on silicon. By controlling the temperature, we adjusted the size of the metallic regions—much larger than previously possible—which affected how the silicon detected terahertz light," says lead author Ai I. Osaka.

Apple's Upcoming M5 SoC Enters Mass Production

Apple's M4 SoC was released to overwhelmingly positive reviews, particularly regarding the commendable performance and efficiency benefits it brought to the table. The chip first appeared in the OLED iPad Pro lineup last May, arriving in the company's MacBook Pro lineup only much later, giving Intel's Lunar Lake and AMD's Strix Point a run for their money. Now, it appears that the company is cognizant of the heat brought by AMD's Strix Halo, and has already commenced mass production for the first SoC in the M5 family - the vanilla M5, according to Korean news outlet ET News.

Just like last time, the M5 SoC has been repeatedly rumored to first arrive in the next-generation iPad Pro, scheduled to enter production sometime in the second half of this year. The MacBook Pro will likely be next-in-line for the M5 treatment, followed the rest of the lineup as per tradition. Interestingly, although Apple decided against using TSMC's 2 nm process for this year's chips, the higher-tier variants, including the M5 Pro and M5 Max are expected to utilize TSMC's SoIC-mH technology, allowing for vertical stacking of chips that should ideally benefit thermals, and possibly even allow for better and larger GPUs thanks to the separation of the CPU and GPU portions. Consequently, yields will also improve, which will allow Apple to bring costs down.

Huawei Ascend 910B Accelerators Power Cloud Infrastructure for DeepSeek R1 Inference

When High-Flyer, the hedge fund behind DeepSeek, debuted its flagship model, DeepSeek R1, the tech world went downward. No one expected Chinese AI companies can produce high-quality AI model that rivals the best from OpenAI and Anthropic. While there are rumors that DeepSeek has access to 50,000 NVIDIA "Hopper" GPUs, including H100, H800, and H20, it seems like Huawei is ready to power Chinese AI infrastructure with its AI accelerators. According to the South China Morning Post, Chinese cloud providers like SiliconFlow.cn are offering DeepSeek AI models for inference on Huawei Ascend 910B accelerators. For the price of only one Yuan for one million input tokens, and four Yuan for one million output tokens, this economic model of AI hosting is fundamentally undercutting competition like US-based cloud providers that offer DeepSeek R1 for $7 per million tokens.

Not only is running on the Huawei Ascend 910B cheaper for cloud providers, but we also reported that it is cheaper for DeepSeek itself, which serves its chat app on the Huawei Ascend 910C. Using domestic accelerators lowers the total cost of ownership, with savings passed down to users. If Western clients prefer AI inference to be served by Western companies, they will have to pay a heftier price tag, often backed by the high prices of GPUs like NVIDIA H100, B100, and AMD Instinct MI300X.

Patriot Unveils the New PDP31 Portable PSSD

Patriot proudly announces the launch of the PDP31, a portable PSSD designed specifically for the mobile lifestyle. Supporting the USB 3.2 Gen 2 standard, the PDP31 boasts a high-speed transfer rate of up to 10 Gbps, with exceptional sequential read and write speeds of up to 1000 MB/s, making it the ideal choice for tech enthusiasts and professionals alike.

To ensure ample storage for all your important files, the PDP31 is available in capacities ranging from 120 GB to 2 TB, making it perfect for storing everything from creative video projects to large work files. It also features a versatile USB Type-C interface for easy connection to desktops, MacBooks, Windows laptops, tablets, and smartphones.

GlobalFoundries Announces New York Advanced Packaging and Photonics Center

GlobalFoundries (Nasdaq: GFS) (GF) today announced plans to create a new center for advanced packaging and testing of U.S.-made essential chips within its New York manufacturing facility. Supported by investments from the State of New York and the U.S. Department of Commerce, the first-of-its-kind center aims to enable semiconductors to be securely manufactured, processed, packaged and tested entirely onshore in the United States to meet the growing demand for GF's silicon photonics and other essential chips needed for critical end markets including AI, automotive, aerospace and defense, and communications.

Growth in AI is driving the adoption of silicon photonics and 3D and heterogeneously integrated (HI) chips to meet power, bandwidth and density requirements in datacenters and edge devices. Silicon photonics chips are also positioned to address power and performance needs in automotive, communications, radar, and other critical infrastructure applications.

Apple Silicon Macs Gain x86 Emulation Capability, Run x86 Windows Apps on macOS

Parallels has announced the introduction of x86 emulation support in Parallels Desktop 20.2.0 for Apple Silicon Macs. This new feature enables users to run x86-based virtual machines on their M-series Mac computers, addressing a longstanding limitation since Apple's transition to its custom Arm-based processors. The early technology preview allows users to run Windows 10, Windows 11 (with some restrictions), Windows Server 2019/2022, and various Linux distributions through a proprietary emulation engine. This development particularly benefits developers and users who need to run 32-bit Windows applications or prefer x86-64 Linux virtual machines as an alternative to Apple Rosetta-based solutions.

However, Parallels is transparent about the current limitations of this preview release. Performance is notably slow, with Windows boot times ranging from 2 to 7 minutes, and overall system responsiveness remains low. The emulation only supports 64-bit operating systems, though it can run 32-bit applications. Additionally, USB device support is not available, and users must rely on Apple's hypervisor as the Parallels hypervisor isn't compatible. Despite these constraints, the release is a crucial step forward in bridging the compatibility gap for Apple Silicon Mac users so legacy software can still be used. The feature has been implemented with the option to start virtual machines hidden in the user interface to manage expectations, as it is still imperfect.

Ultra Accelerator Link Consortium (UALink) Welcomes Alibaba, Apple and Synopsys to Board of Directors

Ultra Accelerator Link Consortium (UALink) has announced the expansion of its Board of Directors with the election of Alibaba Cloud Computing Ltd., Apple Inc., and Synopsys Inc. The new Board members will leverage their industry knowledge to advance development and industry adoption of UALink - a high-speed, scale-up interconnect for next-generation AI cluster performance.

"Alibaba Cloud believes that driving AI computing accelerator scale-up interconnection technology by defining core needs and solutions from the perspective of cloud computing and applications has significant value in building the competitiveness of intelligent computing supernodes," said Qiang Liu, VP of Alibaba Cloud, GM of Alibaba Cloud Server Infrastructure. "The UALink consortium, as a leader in the interconnect field of AI accelerators, has brought together key members from the AI infrastructure industry to work together to define interconnect protocol which is natively designed for AI accelerators, driving innovation in AI infrastructure. This will strongly promote the innovation of AI infrastructure and improve the execution efficiency of AI workloads, contributing to the establishment of an open and innovative industry ecosystem."

Apple M4 MacBook Air Enters Production, M5 MacBook Pro on Track for 2025 Sans Redesign

The Apple M4 hardly needs any introduction - the latest desktop-class SoC from the Cupertino giant is remarkably fast, while being impressively efficient. Its recently unveiled Pro and Max variants are equally praiseworthy, although none of the 4th generation Apple Silicon goodness is available on the extremely popular MacBook Air as of right now. However, that is about to change soon according to a reliable recent report.

According to Bloomberg's Mark Gurman, the M4-powered MacBook Air has already entered production, and is scheduled to witness the light of day by the spring of next year, possibly even earlier. However, it is certainly worth noting that unlike the MacBook Pro, the MacBook Air does not feature active cooling, making its performance rather limited in demanding, sustained scenarios as compared to the MacBook Pro. Even then, the M4 is likely to be much snappier than its primary x86 rival, Intel's Lunar Lake, if the M4 iPad Pro's performance is anything to go by.

Alphawave Semi Scales UCIe to 64 Gbps for 3nm Die-to-Die Chiplet Connectivity

Alphawave Semi (LSE: AWE), a global leader in high-speed connectivity and compute silicon for the world's technology infrastructure, proudly introduces the industry's first 64 Gbps Universal Chiplet Interconnect Express (UCIe) Die-to-Die (D2D) IP Subsystem to deliver unprecedented chiplet interconnect data rates, setting a new standard for ultra-high-performance D2D connectivity solutions in the industry. The third generation, 64 Gbps IP Subsystem builds on the successes of the most recent Gen 2 36 Gbps IP subsystem and silicon-proven Gen 1 24 Gbps and is available in TSMC's 3 nm Technology for both Standard and Advanced packaging. The silicon proven success and tapeout milestones pave the way for Alphawave Semi's Gen 3 UCIe IP subsystem offering.

Alphawave Semi is set to revolutionize connectivity with its Gen 3 64 Gbps UCIe IP, delivering a bandwidth density of over 20 Tbps/mm, with ultra-low power and latency. This solution is highly configurable supporting multiple protocols, including AXI-4, AXI-S, CXS, CHI and CHI-C2C to address the growing demands for high-performance connectivity across disaggregated systems in High-Performance Computing (HPC), Data Centers, and Artificial Intelligence (AI) applications.

EU Approves €1.3B Italian Subsidy for Silicon Box Chiplet Plant

Silicon Box, a global leader in advanced semiconductor packaging and system integration, welcomes the European Commission's approval of approximately €1.3 billion for its new manufacturing facility in Italy. The project, representing a total investment of €3.2 billion, will create 1,600 high-skilled jobs and establish Europe's most advanced semiconductor packaging facilities.

The investment supports the EU's strategic goal to produce 20% of the world's semiconductors by 2030 and marks Silicon Box's first expansion beyond Singapore. With its proprietary large format panel-level process lines, the factory can scale up the packaging of chips 6 to 8 times more than traditional wafer-level packaging.

GlobalWafers Awarded $406M via U.S. CHIPS Act to Boost 300mm Wafer Supply

The U.S. Department of Commerce will award GlobalWafers America and MEMC, LLC, U.S. subsidiaries of Taiwan-based GlobalWafers Co., Ltd., up to $406 million in direct funding under the CHIPS Incentives Program's Funding Opportunity for Commercial Fabrication Facilities.

The award will support planned investments of $4 billion in advanced semiconductor wafer manufacturing facilities in Sherman, Texas and St. Peters, Missouri. The Department will disburse the funds based on GWA's and MEMC's completion of project milestones over a multi-year timeframe.

RPCS3 PlayStation 3 Emulator Gets Native arm64 Support on Linux, macOS, and Windows

The RPCS3 team has announced the successful implementation of arm64 architecture support for their PlayStation 3 emulator. This development enables the popular emulator to run on a broader range of devices, including Apple Silicon machines, Windows-on-Arm, and even some smaller Arm-based SBC systems like the Raspberry Pi 5. The journey to arm64 support began in late 2021, following the release of Apple's M1 processors, with initial efforts focused on Linux platforms. After overcoming numerous technical hurdles, the development team, led by core developer Nekotekina and graphics specialist kd-11, achieved a working implementation by mid-2024. One of the primary challenges involved adapting the emulator's just-in-time (JIT) compiler for arm64 systems.

The team developed a solution using LLVM's intermediate representation (IR) transformer, which allows the emulator to generate code once for x86-64 and then transform it for arm64 platforms. This approach eliminated the need to maintain separate codebases for different architectures. A particular technical challenge emerged from the difference in memory management between x86 and arm64 systems. While the PlayStation 3 and traditional x86 systems use 4 KB memory pages, modern arm64 platforms typically operate with 16 KB pages. Though this larger page size can improve memory performance in native applications, it presented unique challenges for emulating the PS3's graphics systems, particularly when handling smaller textures and buffers. While the emulator now runs on arm64 devices, performance varies significantly depending on the hardware. Simple applications and homebrew software show promising results, but more demanding commercial games may require substantial computational power beyond what current affordable Arm devices can provide.

AMD Introduces Versal RF Series Adaptive SoCs With Integrated Direct RF-Sampling Converters

AMD today announced the expansion of the AMD Versal adaptive system-on-chip (SoC) portfolio with the introduction of the Versal RF Series that includes the industry's highest compute performance in a single-chip device with integrated direct radio frequency (RF)-sampling data converters.

Versal RF Series offers precise, wideband-spectrum observability and up to 80 TOPS of digital signal processing (DSP) performance in a size, weight, and power (SWaP)-optimized design, targeting RF systems and test equipment applications in the aerospace and defense (A&D) and test and measurement (T&M) markets, respectively.

Quobly Announces Key Milestone for Fault-tolerant Quantum Computing

Quobly, a leading French quantum computing startup, has reported that FD-SOI technology can serve as a scalable platform for commercial quantum computing, leveraging traditional semiconductor manufacturing fabs and CEA-Leti's R&D pilot line.

The semiconductor industry has played a pivotal role in enabling classical computers to scale at cost; it has the same transformative potential for quantum computers, making them commercially scalable and cost competitive. Silicon spin qubits are excellent for achieving fault-tolerant, large-scale quantum computing, registering clock speeds in the µsec range, fidelity above 99% for one and two-qubit gate operations and incomparably small unit cell sizes (in the hundredths of 100 nm²).

NVIDIA Shows Future AI Accelerator Design: Silicon Photonics and DRAM on Top of Compute

During the prestigious IEDM 2024 conference, NVIDIA presented its vision for the future AI accelerator design, which the company plans to chase after in future accelerator iterations. Currently, the limits of chip packaging and silicon innovation are being stretched. However, future AI accelerators might need some additional verticals to gain the required performance improvement. The proposed design at IEDM 24 introduces silicon photonics (SiPh) at the center stage. NVIDIA's architecture calls for 12 SiPh connections for intrachip and interchip connections, with three connections per GPU tile across four GPU tiles per tier. This marks a significant departure from traditional interconnect technologies, which in the past have been limited by the natural properties of copper.

Perhaps the most striking aspect of NVIDIA's vision is the introduction of so-called "GPU tiers"—a novel approach that appears to stack GPU components vertically. This is complemented by an advanced 3D stacked DRAM configuration featuring six memory units per tile, enabling fine-grained memory access and substantially improved bandwidth. This stacked DRAM would have a direct electrical connection to the GPU tiles, mimicking the AMD 3D V-Cache on a larger scale. However, the timeline for implementation reflects the significant technological hurdles that must be overcome. The scale-up of silicon photonics manufacturing presents a particular challenge, with NVIDIA requiring the capacity to produce over one million SiPh connections monthly to make the design commercially viable. NVIDIA has invested in Lightmatter, which builds photonic packages for scaling the compute, so some form of its technology could end up in future NVIDIA accelerators

Intel Foundry Unveils Technology Advancements at IEDM 2024

Today at the IEEE International Electron Devices Meeting (IEDM) 2024, Intel Foundry unveiled new breakthroughs to help drive the semiconductor industry forward into the next decade and beyond. Intel Foundry showcased new material advancements that help improve interconnections within a chip, resulting in up to 25% capacitance by using subtractive ruthenium. Intel Foundry also was first to report a 100x throughput improvement using a heterogeneous integration solution for advanced packaging to enable ultra-fast chip-to-chip assembly. And to further drive gate-all-around (GAA) scaling, Intel Foundry demonstrated work with silicon RibbonFET CMOS and with gate oxide module for scaled 2D FETs for improved device performance.

"Intel Foundry continues to help define and shape the roadmap for the semiconductor industry. Our latest breakthroughs underscore the company's commitment to delivering cutting-edge technology developed in the U.S., positioning us well to help balance the global supply chain and restore domestic manufacturing and technology leadership with the support of the U.S. CHIPS Act," says Sanjay Natarajan, Intel senior vice president and general manager of Intel Foundry Technology Research.

YMTC Produces up to 500,000 Wafers Per Year of Leading-Edge NAND Memory

Chinese semiconductor memory giant YMTC is reportedly manufacturing anywhere between 400-500,000 wafers per year of leading-edge NAND memory, all on domestically produced wafers. According to Mayuki Hashimoto, CEO and Chairman of SUMCO, a Japanese company supplying raw silicon ingots and polished wafers, they are seeing a significant business impact stemming from China's growing self-reliance, especially with companies like YMTC producing its own silicon ingots and polished wafers. This has led to SUMCO's decreasing revenue, where the CEO shared some insights about Chinese ambitions. He added that China is producing about one million wafers of silicon per year, most of which are test wafers. This includes test runs from companies like SMIC and its customers, such as T-Head, HiSilicon, and others.

Last year, YMTC, with its Xtacking 4.0 3D NAND flash architecture, was the first company to achieve a 200+ layer count in the 3D NAND space. The company's product, X4-9070, a 232-layer TLC 3D NAND, uses multiple silicon wafers, hence growing its massive consumption of silicon that is projected to reach 500,000 wafers per year. Given that this is all homegrown silicon from ingots to NAND, this is a massive success for Chinese self-reliance efforts but a huge blow to companies that used to supply Chinese firms with raw materials. Although the company uses custom silicon, it still relies on foreign tools, photoresists, and pre-cursors. There are some indications that YMTC is developing its own tools; it is a plan of a broader strategy in the Chinese semiconductor industry to develop every step of the semiconductor manufacturing process. Huawei is also there to develop EUV scanners, and YMTC could help with its memory business, which is in need of a new tool.

Worldwide Silicon Wafer Shipments Increase 6% in Q3 2024, SEMI Reports

Worldwide silicon wafer shipments increased 5.9% quarter-over-quarter to 3,214 million square inches (MSI) in the third quarter of 2024 and registered 6.8% growth from the 3,010 million square inches recorded during the same quarter last year, the SEMI Silicon Manufacturers Group (SMG) reported in its quarterly analysis of the silicon wafer industry.

"The third quarter wafer shipment results continued the upward trend which started in the second quarter of this year," said Lee Chungwei (李崇偉), Chairman of SEMI SMG and Vice President and Chief Auditor at GlobalWafers. "Inventory levels have declined throughout the supply chain but generally remain high. Demand for advanced wafers used for AI continues to be strong. However, the silicon wafer demand for automotive and industrial uses continues to be muted, while the demand for silicon used for handset and other consumer products has seen some areas of improvement. As a result, 2025 is likely to continue upward trends, but total shipments are not yet expected to return to the peak levels of 2022."

New Arm CPUs from NVIDIA Coming in 2025

According to DigiTimes, NVIDIA is reportedly targeting the high-end segment for its first consumer CPU attempt. Slated to arrive in 2025, NVIDIA is partnering with MediaTek to break into the AI PC market, currently being popularized by Qualcomm, Intel, and AMD. With Microsoft and Qualcomm laying the foundation for Windows-on-Arm (WoA) development, NVIDIA plans to join and leverage its massive ecosystem of partners to design and deliver regular applications and games for its Arm-based processors. At the same time, NVIDIA is also scheduled to launch "Blackwell" GPUs for consumers, which could end up in these AI PCs with an Arm CPU at its core.

NVIDIA's partner, MediaTek, has recently launched a big core SoC for mobile called Dimensity 9400. NVIDIA could use something like that as a base for its SoC and add its Blackwell IP to the mix. This would be similar to what Apple is doing with its Apple Silicon and the recent M4 Max chip, which is apparently the fastest CPU in single-threaded and multithreaded workloads, as per recent Geekbench recordings. For NVIDIA, the company already has a team of CPU designers that delivered its Grace CPU to enterprise/server customers. Using off-the-shelf Arm Neoverse IP, the company's customers are acquiring systems with Grace CPUs as fast as they are produced. This puts a lot of hope into NVIDIA's upcoming AI PC, which could offer a selling point no other WoA device currently provides, and that is tried and tested gaming-grade GPU with AI accelerators.

Infineon Unveils the World's Thinnest Silicon Power Wafer

After announcing the world's first 300-millimeter gallium nitride (GaN) power wafer and opening the world's largest 200-millimeter silicon carbide (SiC) power fab in Kulim, Malaysia, Infineon Technologies AG has unveiled the next milestone in semiconductor manufacturing technology. Infineon has reached a breakthrough in handling and processing the thinnest silicon power wafers ever manufactured, with a thickness of only 20 micrometers and a diameter of 300 millimeters, in a high-scale semiconductor fab. The ultra-thin silicon wafers are only a quarter as thick as a human hair and half as thick as current state-of-the-art wafers of 40-60 micrometers.

"The world's thinnest silicon wafer is proof of our dedication to deliver outstanding customer value by pushing the technical boundaries of power semiconductor technology," said Jochen Hanebeck, CEO at Infineon Technologies. "Infineon's breakthrough in ultra-thin wafer technology marks a significant step forward in energy-efficient power solutions and helps us leverage the full potential of the global trends decarbonization and digitalization. With this technological masterpiece, we are solidifying our position as the industry's innovation leader by mastering all three relevant semiconductor materials: Si, SiC and GaN."

Ultra Accelerator Link Consortium Plans Year-End Launch of UALink v1.0

Ultra Accelerator Link (UALink ) Consortium, led by Board Members from AMD, Amazon Web Services (AWS), Astera Labs, Cisco, Google, Hewlett Packard Enterprise (HPE), Intel, Meta and Microsoft, have announced the incorporation of the Consortium and are extending an invitation for membership to the community. The UALink Promoter Group was founded in May 2024 to define a high-speed, low-latency interconnect for scale-up communications between accelerators and switches in AI pods & clusters. "The UALink standard defines high-speed and low latency communication for scale-up AI systems in data centers"

TSMC Arizona Achieves 4% Higher Yields Than Taiwanese Facilities, Marking Progress for US Silicon Manufacturing

The American semiconductor landscape reached a significant milestone as TSMC's new Arizona manufacturing facility demonstrated remarkable production efficiency, exceeding its Taiwanese counterparts by 4% in yield rates. This achievement, revealed at a recent industry webinar by the company's US division chief, represents a major step forward in America's push to strengthen domestic chip manufacturing capabilities. Since initiating its 4 nm node production operations this spring, the Phoenix-based facility has demonstrated impressive technical proficiency, achieving production standards that match and surpass TSMC's established Taiwanese facilities. The project, backed by substantial federal support, including $11.6 billion in combined grants and loans plus significant tax incentives, aims to establish three cutting-edge manufacturing plants in Arizona.

The company's global leadership praised the facility's performance, noting its strategic importance in demonstrating TSMC's ability to maintain exceptional manufacturing standards across international locations. This success carries particular weight given the project's earlier hurdles, which included workforce challenges and timeline adjustments that shifted the entire production schedule by approximately one year. This development gains additional significance against industry-wide challenges, particularly as competitors like Intel and Samsung face operational and financial obstacles. The semiconductor giant's plans now extend to potential further expansion, with the Phoenix site capable of hosting up to six manufacturing facilities. Future growth prospects could be enhanced by proposed additional government initiatives supporting domestic chip production.

Global Silicon Wafer Shipments to Remain Soft in 2024 Before Strong Expected Rebound in 2025, SEMI Reports

Global shipments of silicon wafers are projected to decline 2% in 2024 to 12,174 million square inches (MSI) with a strong rebound of 10% delayed until 2025 to reach 13,328 MSI as wafer demand continues to recover from the downcycle, SEMI reported today in its annual silicon shipment forecast.

Strong silicon wafer shipment growth is expected to continue through 2027 to meet increasing demand related to AI and advanced processing, driving improved fab utilization rate for global semiconductor production capacity. Moreover, new applications in advanced packaging and high-bandwidth memory (HBM) production, which require additional wafers, are contributing to the rising need for silicon wafers. Such applications include temporary or permanent carrier wafers, interposers, device separation into chiplets, and memory/logic array separation.
Return to Keyword Browsing
Feb 19th, 2025 17:25 EST change timezone

New Forum Posts

Popular Reviews

Controversial News Posts