Friday, July 24th 2020
Intel 7nm CPUs Delayed by a Year, Alder Lake in 2H-2021, Other Commentary from Intel Management
Intel's silicon fabrication woes refuse to torment the company's product roadmaps, with the company disclosing in its Q2-2020 financial results release that the company's first CPUs built on the 7 nanometer silicon fabrication node are delayed by a year due to a further 6-month delay from prior expectations. The company will focus on getting its 10 nm node up to scale in the meantime.
The company mentioned that the 10 nm "Tiger Lake" mobile processor and "Ice Lake-SP" enterprise processor remains on-track for 2020. The company's 12th Generation Core "Alder Lake-S" desktop processors won't arrive before the second half of 2021. In the meantime, Intel will launch its 11th Gen Core "Rocket Lake" processor on the 14 nm node, but with increased IPC from the new "Cypress Cove" CPU cores. Also in 2H-2021, the company will launch its "Sapphire Rapids" enterprise processors that come with next-gen connectivity and updated CPU cores.It's interesting to note that Intel was specific about "CPU" when talking about 7 nm, meaning that Intel's foundry woes only affect its CPU product stack, and not a word was mentioned in the release about the company's discrete GPU and scalar compute processors that are being prototyped and validated. This is probably the biggest hint we'll ever get from Intel that the company's dGPUs are being designed for third-party foundries (such as Samsung or TSMC), and that the Xe dGPU product roadmap is disconnected from that of Intel's fabs.
Given the delays in Intel's 7 nm foundry node, the first Intel client-segment processors based on the node won't arrive before late-2022 or 2023, which means refinements of the current 10 nm silicon fabrication node should support Intel's client-segment product stack for the foreseeable future. The first enterprise 7 nm processors will arrive by the first half of 2023. Intel also mentioned that they expect to see "one full node improvement" from a refined 10 nanometer process, which isn't surprising, given how much experience they have improving their 14 nanometer process.
The company mentioned that the 10 nm "Tiger Lake" mobile processor and "Ice Lake-SP" enterprise processor remains on-track for 2020. The company's 12th Generation Core "Alder Lake-S" desktop processors won't arrive before the second half of 2021. In the meantime, Intel will launch its 11th Gen Core "Rocket Lake" processor on the 14 nm node, but with increased IPC from the new "Cypress Cove" CPU cores. Also in 2H-2021, the company will launch its "Sapphire Rapids" enterprise processors that come with next-gen connectivity and updated CPU cores.It's interesting to note that Intel was specific about "CPU" when talking about 7 nm, meaning that Intel's foundry woes only affect its CPU product stack, and not a word was mentioned in the release about the company's discrete GPU and scalar compute processors that are being prototyped and validated. This is probably the biggest hint we'll ever get from Intel that the company's dGPUs are being designed for third-party foundries (such as Samsung or TSMC), and that the Xe dGPU product roadmap is disconnected from that of Intel's fabs.
Intel is accelerating its transition to 10 nm products this year with increasing volumes and strong demand for an expanding line up. This includes a growing portfolio of 10 nm-based Intel Core processors with "Tiger Lake" launching soon, and the first 10 nm-based server CPU "Ice Lake," which remains planned for the end of this year. In the second half of 2021, Intel expects to deliver a new line of client CPU's (code-named "Alder Lake"), which will include its first 10 nm-based desktop CPU, and a new 10 nm-based server CPU (code-named "Sapphire Rapids"). The company's 7 nm-based CPU product timing is shifting approximately six months relative to prior expectations. The primary driver is the yield of Intel's 7 nm process, which based on recent data, is now trending approximately twelve months behind the company's internal target.Intel's post results call also revealed a handful interesting tentative dates. For starters, "Tiger Lake" is shipping in "a matter of weeks," indicating an imminent launch ahead of the "Back to School" shopping season. Next up, the company's high-performance scalar compute processor, codenamed "Ponte Vecchio" remains slated for 2021-22, and given that it's reportedly being designed for 7 nm, we have our next big hint confirmation that these dGPUs will be built on third-party 7 nm fabs. Intel did mention that the Foveros packaging technology could be further developed over the years, and its upcoming discrete GPUs could combine dies (tiles) from multiple sources, which could include its own fabs.
Given the delays in Intel's 7 nm foundry node, the first Intel client-segment processors based on the node won't arrive before late-2022 or 2023, which means refinements of the current 10 nm silicon fabrication node should support Intel's client-segment product stack for the foreseeable future. The first enterprise 7 nm processors will arrive by the first half of 2023. Intel also mentioned that they expect to see "one full node improvement" from a refined 10 nanometer process, which isn't surprising, given how much experience they have improving their 14 nanometer process.
175 Comments on Intel 7nm CPUs Delayed by a Year, Alder Lake in 2H-2021, Other Commentary from Intel Management
It is just the same with Samsung entry into 3d nand. They took a 40nm process and made history. Everybody knows about 860, nobody knows what came before it eventhough it came in a twice subsequent node.
10nm +++ that boost up to 5.5Ghz with big.LITTLE design that chew tons of power but miraculously competitive against 5nm EUV.
Maybe Intel should just consider shipping bare die locked CPU with cooler soldered on the top, at least user won't complain about temperature.
Lets hope 10nm +++ won't happen, Intel can't be this stubburn, they seems to realize AMD's threat already.
As for Intel outsourcing their GPU to external foundry, it is not unexpected. Considering the maturity of the 14nm fab and yet they are not able to keep up with demand, it is likely worst for 10nm. In addition, I also feel that Intel may not have the expertise to fab big/ complex GPUs, unlike the likes of TSMC, Samsung and GF. They are obligated to because this is a significant event. Intel surely have shared the 7nm roadmap with their investors previously. With the delivery of 7nm products off track, they will need to correct their roadmap and make it transparent to investors. And as you can tell, the moment the news of another 6 months delay in 7nm delivery got announced, the stock got hammered.
Intel's 10nm is closer to TSMC's 7nm and Intel's 7nm is closer to TSMC's 5nm.
Far as I know this just what intel claims and there is no actual proof
There density comes from having several different designs for caches L1 caches transistors are different from L2 and so is it's L3 it's all for space saving.
AMD an other manufacturers use a more uniformed transistor on the nod.
That is why AMD an other always end up 20% larger dies
en.wikipedia.org/wiki/7_nm_process#7_nm_process_nodes_and_process_offerings
It is not just Intel claiming this, industry analysts have a pretty good idea what is going on. If there are products out on a manufacturing process the density and specs can be verified to some degree.
Like really, who believed they were actually gonna release 7nm this year? Do you ever get tired of spouting this rubbish?
That's like Nikola saying they make better electric semis than Tesla. lmao
en.wikichip.org/wiki/7_nm_lithography_process#Density