Saturday, July 20th 2024
Intel Intros 14th Gen Core "E" Embedded Processors with E-cores Disabled
Intel introduced a line of 14th Gen Core "Raptor Lake Refresh" Socket LGA1700 processors for the embedded systems market. A highlight of these chips is that they come with their "Gracemont" E-core clusters disabled, and are pure P-core chips. It's interesting that Intel targets these chips for the embedded systems segment, but isn't building these in the non-socketed BGA packages carried over from its mobile platforms. Intel is addressing nearly all performance market-segments with these chips, including the very top. The Core i9-14901KE processor leading the pack is an 8-core/16-thread chip with eight "Raptor Cove" cores sharing the full 36 MB L3 cache available on the "Raptor Lake-S" die, a maximum boost frequency of 5.80 GHz, base frequency of 3.80 GHz, and processor base power of 125 W. The chip features an iGPU. The "K" in KE denotes that the chip supports overclocking.
Next up, is the Core i9-14901E, the 65 W sibling of this chip, which lacks an unlocked multiplier, and boosts up to 5.60 GHz, with a 2.80 GHz base frequency. Things get interesting with the Core i7-14701E, because the differentiator between the Core i9 and Core i7 SKUs is E-core count, and here we see the i7-14701 retaining the same 8-core/16-thread pure P-core configuration as the Core i9 chips, but with a touch lower frequencies of 5.40 GHz maximum boost, and 2.60 GHz base.The Core i5-14501E is a 6-core/12-thread processor based on the larger "Raptor Lake-S" die, unlike the regular Core i5-14500 that uses the "Alder Lake-S" die. The 6 P-cores share 24 MB of L3 cache, and each feature 2 MB of dedicated L2 cache, unlike the i5-14500, which sees 1.25 MB of L2 cache per P-core, besides the 8 E-cores. This chip boosts up to 5.20 GHz, and has a base frequency of 3.30 GHz. The i5-14501TE is a variant of this chip with 45 W processor base power, 5.10 GHz maximum boost frequency, and 2.20 GHz base frequency.
Lastly, there are the Core i5-14401E, i5-14401EF, and the i5-14401TE. The first two are differentiated with the i5-14401EF lacking integrated graphics, the first two are 65 W chips, while the i5-14401TE is 45 W. The i5-14401E/EF boost up to 4.70 GHz, with a 2.50 GHz base frequency, while the i5-14401TE boosts up to 4.50 GHz, with a 2.00 GHz base frequency.
All chips in the 14th Gen Core E-series feature the same I/O as the regular 14th Gen Core desktop processors, with a PCI-Express 5.0 x16 PEG interface, a CPU-attached Gen 4 x4 NVMe interface, and a DMI 4.0 x8 chipset bus. The memory interface supports dual-channel DDR4 and DDR5 memory types.
Sources:
VideoCardz, Jaykihn (Twitter)
Next up, is the Core i9-14901E, the 65 W sibling of this chip, which lacks an unlocked multiplier, and boosts up to 5.60 GHz, with a 2.80 GHz base frequency. Things get interesting with the Core i7-14701E, because the differentiator between the Core i9 and Core i7 SKUs is E-core count, and here we see the i7-14701 retaining the same 8-core/16-thread pure P-core configuration as the Core i9 chips, but with a touch lower frequencies of 5.40 GHz maximum boost, and 2.60 GHz base.The Core i5-14501E is a 6-core/12-thread processor based on the larger "Raptor Lake-S" die, unlike the regular Core i5-14500 that uses the "Alder Lake-S" die. The 6 P-cores share 24 MB of L3 cache, and each feature 2 MB of dedicated L2 cache, unlike the i5-14500, which sees 1.25 MB of L2 cache per P-core, besides the 8 E-cores. This chip boosts up to 5.20 GHz, and has a base frequency of 3.30 GHz. The i5-14501TE is a variant of this chip with 45 W processor base power, 5.10 GHz maximum boost frequency, and 2.20 GHz base frequency.
Lastly, there are the Core i5-14401E, i5-14401EF, and the i5-14401TE. The first two are differentiated with the i5-14401EF lacking integrated graphics, the first two are 65 W chips, while the i5-14401TE is 45 W. The i5-14401E/EF boost up to 4.70 GHz, with a 2.50 GHz base frequency, while the i5-14401TE boosts up to 4.50 GHz, with a 2.00 GHz base frequency.
All chips in the 14th Gen Core E-series feature the same I/O as the regular 14th Gen Core desktop processors, with a PCI-Express 5.0 x16 PEG interface, a CPU-attached Gen 4 x4 NVMe interface, and a DMI 4.0 x8 chipset bus. The memory interface supports dual-channel DDR4 and DDR5 memory types.
64 Comments on Intel Intros 14th Gen Core "E" Embedded Processors with E-cores Disabled
I did not see the article say these are broken or defective. Maybe, these are not defective and the reason Intel disables the cluster is different than the obvious one 'defective cores'.
I tried to dig for a few voltage spec settings in Intel's PDF of 13th/14th gen, but they didn't seem to provided it for L2 cache voltage and cache voltage. It would be nice to know what's minimum, typical, max on those yet I couldn't find those details and I tried.
wouldnt surprise me one bit that if the p cores were disabled the chips that are crashing now would stop crashing as the e cores aren’t clocked to stupid speeds.
And then there are estimates by analysts such as TrendForce: which doesn't tell us the most basic thing - are the bad chips totally unusable, or do they just have a small number of bad cores out of 34?
2.5 years into Intel 7 manufacturing, I'd say it would be very bad for Intel if less than 50% of the CPUs on a Raptor Lake wafer were operative - I mean fully operative, with zero defects. They can't sell that many i9-13900/14900 chips (despite countless suffixes) because those all cost 440€ and up. So they still have to disable some good parts. The same is true of the other chips in this new series, see my post #42. Interestingly, the two disabled P cores in the 14501E also have their L3 slices inoperative. Exactly. I'd even suspect the power delivery system on the chip (and substrate too) first, which would mean that you can't pin the flaw to any of the cores.
It is fairly simple in a market economy to correct a demand-exceeds-supply disequilibrium: gradually increase prices in order for demand to match manufacturing capacity.
The other way around: When supply-exceeds-demand, gradually lower prices in order for demand to match manufacturing capacity.
If prices aren't increased/decreased gradually (that is: are increased/decreased sharply) it creates a very high risk of unhealthy oscillations in the economy. For example, search for "prey predator model dampening" in Google Images.
With SMT, you can't really run secure processes on shared core and it costs die space and increases complexity. The OS has to make sure to not schedule two processes on the same core, so it quickly looses usefulness. Stuff servers want to run become severely limited, like virtual machines, web servers, encryption, etc.
OoO is also subject to this to some extent but the performance is worth the trouble, as it increases 3, 4 or 5x. I will say the future is looking like multithreading be powered by secure and isolated efficient cores. This is already mostly the case for Intel and ARM.