Monday, May 23rd 2022
AMD Unveils 5 nm Ryzen 7000 "Zen 4" Desktop Processors & AM5 DDR5 Platform
AMD today unveiled its next-generation Ryzen 7000 desktop processors, based on the Socket AM5 desktop platform. The new Ryzen 7000 series processors introduce the new "Zen 4" microarchitecture, with the company claiming a 15% single-threaded uplift over "Zen 3" (16-core/32-thread Zen 4 processor prototype compared to a Ryzen 9 5950X). Other key specs about the architecture put out by AMD include a doubling in per-core L2 cache to 1 MB, up from 512 KB on all older versions of "Zen." The Ryzen 7000 desktop CPUs will boost to frequencies above 5.5 GHz. Based on the way AMD has worded their claims, it seems that the "+15%" number includes IPC gains, plus gains from higher clocks, plus what the DDR4 to DDR5 transition achieves. With Zen 4, AMD is introducing a new instruction set for AI compute acceleration. The transition to the LGA1718 Socket AM5 allows AMD to use next-generation I/O, including DDR5 memory, and PCI-Express Gen 5, both for the graphics card, and the M.2 NVMe slot attached to the CPU socket.
Much like Ryzen 3000 "Matisse," and Ryzen 5000 "Vermeer," the Ryzen 7000 "Raphael" desktop processor is a multi-chip module with up to two "Zen 4" CCDs (CPU core dies), and one I/O controller die. The CCDs are built on the 5 nm silicon fabrication process, while the I/O die is built on the 6 nm process, a significant upgrade from previous-generation I/O dies that were built on 12 nm. The leap to 5 nm for the CCD enables AMD to cram up to 16 "Zen 4" cores per socket, all of which are "performance" cores. The "Zen 4" CPU core is larger, on account of more number-crunching machinery to achieve the IPC increase and new instruction-sets, as well as the larger per-core L2 cache. The cIOD packs a pleasant surprise—an iGPU based on the RDNA2 graphics architecture! Now most Ryzen 7000 processors will pack integrated graphics, just like Intel Core desktop processors.The Socket AM5 platform is capable of up to 24 PCI-Express 5.0 lanes from the processor. 16 of these are meant for the PCI-Express graphics slots (PEG), while four of these go toward an M.2 NVMe slot attached to the CPU—if you recall, Intel "Alder Lake" processors have 16 Gen 5 lanes toward PEG, but the CPU-attached NVMe slot runs at Gen 4. The processor features dual-channel DDR5 (four sub-channel) memory, identical to "Alder Lake," but with no DDR4 memory support. Unlike Intel, the AM5 Socket retains cooler compatibility with AM4, so the cooler you have sitting on your Ryzen CPU right now, will work perfectly fine.The platform also puts out up to 14 USB 20 Gbps ports, including type-C. With onboard graphics now making it to most processor models, motherboards will feature up to four DisplayPort 2 or HDMI 2.1 ports. The company will also standardize Wi-Fi 6E + Bluetooth WLAN solutions it co-developed with MediaTek, weaning motherboard designers away from Intel-made WLAN solutions.
At its launch, in Fall 2022, AMD's AM5 platform will come with three motherboard chipset options—the AMD X670 Extreme (X670E), the AMD X670, and the AMD B650. The X670 Extreme was probably made by re-purposing the new-generation 6 nm cIOD die to work as a motherboard chipset, which means its 24 PCIe Gen 5 lanes work toward building an "all Gen 5" motherboard platform. The X670 (non-extreme), is very likely a rebadged X570, which means you get up to 20 Gen 4 PCIe lanes from the chipset, while retaining PCIe Gen 5 PEG and CPU-attached NVMe connectivity. The B650 chipset is designed to offer Gen 4 PCIe PEG, Gen 5 CPU-attached NVMe, and likely Gen 3 connectivity from the chipset.AMD is betting big on next-generation M.2 NVMe SSDs with PCI-Express Gen 5, and is gunning to be the first desktop platform with PCIe Gen 5-based M.2 slots. The company is said to be working with Phison to optimize the first round of Gen 5 SSDs for the platform.All major motherboard vendors are ready with Socket AM5 motherboards. AMD showcased a handful, including the ASUS ROG Crosshair X670E Extreme, the ASRock X670E Taichi, MSI MEG X670E ACE, GIGABYTE X670E AORUS Xtreme, and the BIOSTAR X670E Valkyrie.
AMD is working to introduce several platform-level innovations like it did with Smart Access Memory with its Radeon RX 6000 series, which builds on top of the PCIe Resizable BAR technology by the PCI-SIG. The new AMD Smart Access Storage technology builds on Microsoft DirectStorage, by adding AMD platform-awareness, and optimization for AMD CPU and GPU architectures. DirectStorage enables direct transfers between a storage device and the GPU memory, without the data having to route through the CPU cores. In terms of power delivery Zen 4 uses the same SVI3 voltage control interface that we saw introduced on the Ryzen Mobile 6000 Series. For desktop this means the ability to address a higher number of VRM phases and to process voltage changes much faster than with SVI2 on AM4.Taking a closer look at the AMD Footnotes, "RPL-001", we find out that the "15% IPC gain" figure is measured using Cinebench and compares a Ryzen 9 5950X processor (not 5800X3D), on a Socket AM4 platform with DDR4-3600 CL16 memory, to the new Zen 4 platform running at DDR5-6000 CL30 memory. If we go by the measurements from our Alder Lake DDR5 Performance Scaling article, then this memory difference alone will account for roughly 5% of the 15% gains.The footnotes also reference a "RPL-003" claim that's not used anywhere in our pre-briefing slide deck, but shown in the video presentation. In the presentation we're seeing a live demo comparison between a "Ryzen 7000 Series" processor and Intel's Core i9-12900K "Alder Lake." It's worth mentioning here that AMD isn't disclosing the exact processor model, only that it's a 16-core part, if we follow the Zen 3 naming, that would probably be the Ryzen 9 7950X flagship. The comparison runs the Blender rendering software, which loads all CPU cores. Here we see the Ryzen 7000 chip finish the task in 204 seconds, compared to the i9-12900K and its 297 seconds time, which is a huge 31% difference—very impressive. It's worth mentioning that the memory configurations are slightly mismatched. Intel is running with DDR5-6000 CL30, whereas the Ryzen is tested with DDR5-6400 CL32—lower latency for Intel, higher MHz for Ryzen. While ideally we'd like to see identical memory used, the differences due to the memory configuration should be very small.AMD is targeting a Fall 2022 launch for the Ryzen 7000 "Zen 4" desktop processor family, which would put this sometime between September thru October. The company is likely to detail the "Zen 4" microarchitecture and the Ryzen 7000 SKU list in the coming weeks.
Update 21:00 UTC: AMD has clarified that the 170 W PPT power numbers seen are the absolute max limits, not "typical" like the 105 W, on Zen 3, which were often exceeded during heavy usage.
Update May 26th: AMD further clarified that the 170 W number is "TDP", not "PPT", which means that when the usual x1.35 factor is applied, actual power usage can go up to 230 W.
You can watch the whole presentation again at YouTube:
Much like Ryzen 3000 "Matisse," and Ryzen 5000 "Vermeer," the Ryzen 7000 "Raphael" desktop processor is a multi-chip module with up to two "Zen 4" CCDs (CPU core dies), and one I/O controller die. The CCDs are built on the 5 nm silicon fabrication process, while the I/O die is built on the 6 nm process, a significant upgrade from previous-generation I/O dies that were built on 12 nm. The leap to 5 nm for the CCD enables AMD to cram up to 16 "Zen 4" cores per socket, all of which are "performance" cores. The "Zen 4" CPU core is larger, on account of more number-crunching machinery to achieve the IPC increase and new instruction-sets, as well as the larger per-core L2 cache. The cIOD packs a pleasant surprise—an iGPU based on the RDNA2 graphics architecture! Now most Ryzen 7000 processors will pack integrated graphics, just like Intel Core desktop processors.The Socket AM5 platform is capable of up to 24 PCI-Express 5.0 lanes from the processor. 16 of these are meant for the PCI-Express graphics slots (PEG), while four of these go toward an M.2 NVMe slot attached to the CPU—if you recall, Intel "Alder Lake" processors have 16 Gen 5 lanes toward PEG, but the CPU-attached NVMe slot runs at Gen 4. The processor features dual-channel DDR5 (four sub-channel) memory, identical to "Alder Lake," but with no DDR4 memory support. Unlike Intel, the AM5 Socket retains cooler compatibility with AM4, so the cooler you have sitting on your Ryzen CPU right now, will work perfectly fine.The platform also puts out up to 14 USB 20 Gbps ports, including type-C. With onboard graphics now making it to most processor models, motherboards will feature up to four DisplayPort 2 or HDMI 2.1 ports. The company will also standardize Wi-Fi 6E + Bluetooth WLAN solutions it co-developed with MediaTek, weaning motherboard designers away from Intel-made WLAN solutions.
At its launch, in Fall 2022, AMD's AM5 platform will come with three motherboard chipset options—the AMD X670 Extreme (X670E), the AMD X670, and the AMD B650. The X670 Extreme was probably made by re-purposing the new-generation 6 nm cIOD die to work as a motherboard chipset, which means its 24 PCIe Gen 5 lanes work toward building an "all Gen 5" motherboard platform. The X670 (non-extreme), is very likely a rebadged X570, which means you get up to 20 Gen 4 PCIe lanes from the chipset, while retaining PCIe Gen 5 PEG and CPU-attached NVMe connectivity. The B650 chipset is designed to offer Gen 4 PCIe PEG, Gen 5 CPU-attached NVMe, and likely Gen 3 connectivity from the chipset.AMD is betting big on next-generation M.2 NVMe SSDs with PCI-Express Gen 5, and is gunning to be the first desktop platform with PCIe Gen 5-based M.2 slots. The company is said to be working with Phison to optimize the first round of Gen 5 SSDs for the platform.All major motherboard vendors are ready with Socket AM5 motherboards. AMD showcased a handful, including the ASUS ROG Crosshair X670E Extreme, the ASRock X670E Taichi, MSI MEG X670E ACE, GIGABYTE X670E AORUS Xtreme, and the BIOSTAR X670E Valkyrie.
AMD is working to introduce several platform-level innovations like it did with Smart Access Memory with its Radeon RX 6000 series, which builds on top of the PCIe Resizable BAR technology by the PCI-SIG. The new AMD Smart Access Storage technology builds on Microsoft DirectStorage, by adding AMD platform-awareness, and optimization for AMD CPU and GPU architectures. DirectStorage enables direct transfers between a storage device and the GPU memory, without the data having to route through the CPU cores. In terms of power delivery Zen 4 uses the same SVI3 voltage control interface that we saw introduced on the Ryzen Mobile 6000 Series. For desktop this means the ability to address a higher number of VRM phases and to process voltage changes much faster than with SVI2 on AM4.Taking a closer look at the AMD Footnotes, "RPL-001", we find out that the "15% IPC gain" figure is measured using Cinebench and compares a Ryzen 9 5950X processor (not 5800X3D), on a Socket AM4 platform with DDR4-3600 CL16 memory, to the new Zen 4 platform running at DDR5-6000 CL30 memory. If we go by the measurements from our Alder Lake DDR5 Performance Scaling article, then this memory difference alone will account for roughly 5% of the 15% gains.The footnotes also reference a "RPL-003" claim that's not used anywhere in our pre-briefing slide deck, but shown in the video presentation. In the presentation we're seeing a live demo comparison between a "Ryzen 7000 Series" processor and Intel's Core i9-12900K "Alder Lake." It's worth mentioning here that AMD isn't disclosing the exact processor model, only that it's a 16-core part, if we follow the Zen 3 naming, that would probably be the Ryzen 9 7950X flagship. The comparison runs the Blender rendering software, which loads all CPU cores. Here we see the Ryzen 7000 chip finish the task in 204 seconds, compared to the i9-12900K and its 297 seconds time, which is a huge 31% difference—very impressive. It's worth mentioning that the memory configurations are slightly mismatched. Intel is running with DDR5-6000 CL30, whereas the Ryzen is tested with DDR5-6400 CL32—lower latency for Intel, higher MHz for Ryzen. While ideally we'd like to see identical memory used, the differences due to the memory configuration should be very small.AMD is targeting a Fall 2022 launch for the Ryzen 7000 "Zen 4" desktop processor family, which would put this sometime between September thru October. The company is likely to detail the "Zen 4" microarchitecture and the Ryzen 7000 SKU list in the coming weeks.
Update 21:00 UTC: AMD has clarified that the 170 W PPT power numbers seen are the absolute max limits, not "typical" like the 105 W, on Zen 3, which were often exceeded during heavy usage.
Update May 26th: AMD further clarified that the 170 W number is "TDP", not "PPT", which means that when the usual x1.35 factor is applied, actual power usage can go up to 230 W.
You can watch the whole presentation again at YouTube:
211 Comments on AMD Unveils 5 nm Ryzen 7000 "Zen 4" Desktop Processors & AM5 DDR5 Platform
Now admittedly there could be 3 variants, with x3d versions also thrown in, but that'd be even more bizarre as far as I'm concerned!
Would <3 if they one day include a "Automatic Toggle Mode", so that the APU runs the desktop/video applications & the (comletely shut down) GPU turns only on for gaming.
Now that would be a real killer feature. :rockout:
The common use for faster is to denote that A has higher speed than B
While the common use of Quicker is to denote that A completes something at a shorter time than B
If AMD used quicker it would be fine ,
since they used faster they involve speed, which means they involve rate (speed : the rate at which someone or something moves or operates or is able to move or operate) [or more strictly in Euclidean Physics : Speed is the ratio of the distance traveled by an object to the time required to travel that distance] so you see fast/faster essentially refers to a fraction, with time being just one of the 2 numbers and it's always the denominator and being the denominator it gives 45% not 31% , hence the logic gap in AMD's wording.
Edit:
I just saw the last update regarding 170W being the absolute max limit (probably 125W typical vs 105W), that's great news and clear advantage vs Intel!
I'm curious more for the performance/W comparison between 13400/7600(X?) 65W parts that will be much closer probably.
15% (well up to), isn't too bad, but as always, wait for the reviews.
Actually still waiting for W1zz to review the 5500, 5600, and 5700x cpus
The winner is not who's faster, but the one who get's the quickest from point A to point B.
Especially now with the rising energy costs.
As I said, it mostly got resolved after a few months, but some things took quite a while for AMD to figure out.
videocardz.com/newz/amd-confirms-ryzen-7000-5-5-ghz-demo-did-not-involve-overclocking
So, by this logic Intel being quicker than AMD in the past, should not have lost the race in blender or any other application that Intel lost to. :p:D I belive thats how to use that, its called the Margin of Error. I agree. Words really have no universal meaning, they have accepted meanings. Webster saw to that, the first dictionaries had a significant amount slang definitions, later changed.
Using this logic fanboi definitions say:
AMD good
Intel bad
Intel quicker
AMD faster
Simple! :twitch:
I'm also a little sceptical of the claimed compatibility; surely the dimensions (particularly Z-height) of the new socket and chip are different enough to make a meaningful difference? I'm aware that HSIO is expensive, especially PCIe 5.0, which is why I was hoping the CPU and chipsets would be putting out more lanes. My main concern is that the lowest-end chipset will, as usual, get the lowest PCIe version and number of lanes, and manufacturers will thus not bother with USB4 or USB-C in SKUs using said chipset. Given that I've already seen a few boards and not even the highest-end of them have more than 2 type-C ports on the rear panel, I'll withhold judgement until actual reviews drop. Thanks, although I'd much prefer for it to be platform-native as opposed to relying on third-party controllers. Experience has shown that those are generally, to put it bluntly, shit (I'm looking at you VIA). To be fair, ASMedia has been pretty good. Sure it has potential, but I don't believe that it's been a game-changer (pardon the pun) for anything more than a handful of console titles. If it was so great I'd expect its adoption to be much higher in console land, which would push much higher adoption for PCs to allow ports, but I'm just not seeing it.
Also another speculation that comes to mind regarding the blender score and based on the answer regarding multithreading performance seems that it's mainly clock driven with a possible smt uplift.
I don't know what the average all core frequency 5950X would be hitting in a similar blender test but the difference between 7950X and 5950X simingly is 1.45X plus 1.05X ≈ 1.52X
If 5950X SMT implementation has -10% lower uplift vs 7950X SMT implementation, then if 7950X was hitting 5.2GHz on all cores with the AIO liquid cooler that they used, to hit +52% uplift from 5950X, 5950X would be running at 5.2GHz/1.52/0.9≈3.8GHz.
3.8GHz it seems a little low even for Blender, TPU members that have a 5950X would know more.
Edit: i forget the IPC difference so with 5% instead of 3.8GHz for 5950X we would have around 4GHz, with 10% around 4.2GHz and so on, so depending on the IPC difference we may not even have SMT improvements at all (not likely, because we are talking around 11% IPC improvements and 5950X in similar blender test at 3.8GHz all core frequency)
Of the four original boards i had, i've still got three working perfectly fine. The only ones with unsolveable issues were the budget MSI 300 and 450 boards.
The x370 setup had lingering memory issues i could never resolve, until i moved that RAM over to an intel system... and the issues moved with it. Faulty corsair RAM that got unstable above 45C, so that issue went away every winter and came back every summer to drive me mad.
That RAM worked perfectly fine at its rated speed in my previous Intel system.
The first couple of months there were a lot of other weird little issue too, it's in a thread here somewhere...
X570, lots of weird issues again early on and some that took much longer to solve, again, plenty posts about it here in the forums. Biggest blunder was of course boost speeds that were promised but took them 3-4 months to deliver after launch.
I never said they didn't solve the issues, my point was simply that I'm sick and tired of being a beta tester for these companies. Spend an extra six months working on these platforms and make them stable before launch, instead of rushing it out so you can launch before your one single competitor. Obviously this doesn't just apply to AMD and Intel, but also a lot of other companies that have more competition, but even so, the same applies, stop launching beta products or worse sometimes.
I wrote a whole ass paragraph here and gave up, how about just a single image showing that hey - you were overclocking past officially supported speeds?
Intel dodged the issue by locking their cheap boards to 2133Mhz, AMD just gave people headroom to overclock and then realised trusting consumers was a terrible idea